
 1

Breeding Decision Trees Using Evolutionary Techniques

Athanasios Papagelis PAPAGEL@AHEADRM.COM
Dimitr is Kalles KALLES@AHEADRM.COM
Computer Technology Institute, Patras, Greece, PO BOX 1122, 261 10
AHEAD Relationship Mediators, Patras, Greece, GR 26221

Abstract

We explore the use of genetic algorithms to directly
evolve classification decision trees. We argue on the
suitability of such a concept learner due to its ability
to efficiently search complex hypotheses spaces and
discover conditionally dependent as well as
irrelevant attributes. The performance of the system
is measured on a set of artificial and standard
discretized concept-learning problems and compared
with the performance of two known algorithms
(C4.5, OneR). We demonstrate that the derived
hypotheses of standard algorithms can substantially
deviate from the optimum. This deviation is partly
because of their non-universal procedural bias and it
can be reduced using global metrics of tree quality
like the one proposed.

1 INTRODUCTION

Decision tree induction is a very popular and practical
method for pattern classification. The construction of
optimal decision trees has been proven to be NP-complete,
under several aspects of optimality and even for simple
concepts (Murthy, 1998). Current inductive learning
algorithms use variants of impurity functions like
information gain, gain ratio (Quinlan, 1986), gini-index
(Breiman et al., 1984), distance measure (de Mantaras,
1989) to guide the search. Fayyad (1991) discusses several
deficiencies of impurity measures. He pointed out that
impurity measures are insensitive to inter-class separation
and intra-class fragmentation, as well as insensitive to
permutations of the class probability distribution. Other
authors (Kononenko et al.,1997) (Ragavan & Rendell,
1993) indicated that those measures assume that attributes
are conditionally independent and therefore they have poor
chances of revealing a good hypothesis in domains with
strong conditional dependencies between attributes.
Furthermore, several authors have provided evidence that
the presence of irrelevant attributes can mislead the
impurity functions towards producing bigger, less
comprehensible, more error-prone classifiers.

This work is an attempt to overcome the use of greedy
heuristics and search the decision tree space in a more
natural way. More specifically, we make use of genetic
algorithms to directly evolve binary decision trees in the
conquest for the one that most closely matches the target
concept. On doing so we adopt a natural representation of
the search space using actual decision trees and not binary
strings. We couple our objective with a simplification
motivation. We use GAs to robustly evolve accurate as
well as simple decision trees.

Although GAs have been used for classification and
concept learning tasks (Wilson, 1986) (Goldberg, 1989)
(Booker et al., 1990) (De Jong et al, 1993) (Janikow, 1993)
(Congdon, 1995), there is rather little work on their util ity
as a tool to evolve decision trees1. Close but distinct
relatives of this work comes from Koza (1991) who points
out the suitability of the tree genome for decision tree
building, Bot and Longdon (2000) who used GP techniques
to evolve linear classification trees and Nikolaev and
Slavov (1998) who analyzed a global fitness landscape
structure and its application on decision tree building.

Since Schaffer (1993) introduced the concept of different
levels of suitability for learner biases (the fact that no
algorithm biases can be suitable for every target concept)
the idea that there is no universally better algorithm is fast
maturing on the machine learning community. We might do
better to map different algorithms to different groups of
problems with practical importance.

There are several types of biases but here we distinguish
between preference and procedural bias. A preference bias
is based on the learner’s behavior while a procedural bias is
based on the learner’s design. For example, C4.5 is biased
towards accurate, small trees (preference bias) and uses the
gain-ratio metric and minimum-error pruning (different
procedural biases). A preference bias is most often
desirable since it determines the characteristics of the
produced tree. On the other hand, an inadequate procedural
bias may severely affect the quality of the output. The
proposed search imposes a new weak procedural bias, one
that allows the concept learner to consider a relative large

1 However, the tree genome has been extensively used in GP to represent
program parse trees.

 2

number of hypotheses, in a relative efficient manner. The
proposed weak bias employs global metrics of tree quality.
We thus shift from “how to induce a tree” (standard,
impurity-based induction) to “what criteria an induced tree
must satisfy” . We view setting a policy direction, as
opposed to how a policy should be implemented, as a de
facto decrease in bias with significant advantages over
other highly used procedural biases in complex search
spaces.

There is an active debate on whether less greedy heuristics
can improve the quality of the produced trees. Garey and
Graham (1974) showed that greedy algorithms can be made
to perform arbitrarily worse than the optimal. Norton
(1989) showed that exhaustive lookahead applied to ID3
reduced tree sizes on average and produced small gains in
accuracy. Ragavan and Rendell (1993) showed that their
LFC algorithm that performed both lookahead and
constructive induction can perform well on tasks involving
feature interaction. On the other hand, Murthy and Salzberg
(1995) found that one-level lookahead yield larger, less
accurate trees on many tasks. Quinlan and Cameron-Jones
(1995) reported similar findings and hypothesized that
lookahead can yield “ fluke theories” that fit the training
data but have poor predictive accuracy.

Genetic algorithms are neither hill-climbing systems nor
exhaustive searchers. Rather, they are a type of beam
search. When tuned properly GAs can aggregate desired
characteristics of both hill-climbing and exhaustive search
algorithms.

The rest of this paper is organized in three sections. In the
next section we elaborate on the construction of the
proposed system (GATree) and the modifications to the
standard mutation-crossover operators. We then
demonstrate via an experimental session that the proposed
search procedure indeed works and point out some of its
benefits. Finally, we put all the details together identifying
good points or possible pitfalls and discussing lines of
research that have been deemed worthy of following.

2 THE GATree SYSTEM

In order to apply GAs to a particular problem, we need to
select an internal representation of the space to be searched
combined with an external evaluation function, which
assigns scores to candidate solutions. Traditionally, GAs
use binary strings to represent points in search space.
However, such representations do not appear well suited for
representing the space of concept descriptions that are
generally symbolic in nature and with varying length and
complexity.

There are two different approaches one might take to
resolve this issue. The first involves changing the
fundamental GA operators so as to work well with the
complex non-string objects, while the second attempts to

construct string representations of solutions that minimize
any changes to the basic GA philosophy.

We stuck with the first approach for two fundamental
reasons. First, it is natural to use a tree structure to represent
decision trees and the mutation-crossover operators can be
efficiently altered to match this structure. Second, it is not
trivial to alter the basic mutation-crossover operators so as
to be used with string representatives of decision trees and
at the same time preserve trees structures.

For this work we have used GALIB (Wall, 1996), a robust
C++ library of Genetic Algorithm Components. GALIB
offers a wide range of internal representations combined
with easily adjusted parameters so as to optimally tune its
behavior.

2.1 DATA PREPROCESSING AND GENETIC
OPERATORS

We use GALIB’s tree representation to build a population
of minimal binary decision trees (trees that consist from one
node and two leaves). Every decision node has a random
chosen value as its installed test. This is done in two steps.
First we choose a random attribute. Then, if that attribute is
nominal we randomly choose one of its possible values; if it
is continuous we randomly pick an integer value belonging
to its min-max range. This approach reduces the size of the
search space and it is straightforward. Still, it has problems
with real-valued attributes; for this work we concentrated
on nominal attributes. Leaves are populated using the same
line of thought; we just pick a random class from the ones
available.

The basic form of the proposed algorithm introduces
minimum changes to the mutation-crossover operators.
Mutation chooses a random node of a desired tree and it
replaces that node’s test-value with a new random chosen
value. When the random node is a leaf, it replaces the
installed class with a new random chosen class (Figure 1).

The crossover operator chooses two random nodes and just
swaps those nodes’ sub-trees. Since predicted values rest

 Mutated Node

New Test Value

 Mutated Leaf

New Class

Figure 1. Mutation Examples

 3

xsize

x
ssifiedCorrectClaitreepayoff

i

i ��
2

2 *)(

only on leaves, the crossover operator does not affect tree’s
coherence (Figure 2).

2.2 PAYOFF FUNCTION

A natural way to assign util ity to a decision tree is by using
it to classify the known instance-set. Each tree is granted a
scaled payoff according to its performance. We chose to
grant higher payoffs to smaller trees (assuming that they
perform almost equally with bigger ones). This is a way to
avoid unnecessary test-values replications along a specific
path (an unavoidable side-effect since we do not exclude
any already used attribute-value from being used again)
while at the same time we derive comprehensible decision
trees. Thus, the fitness function is balanced between
accuracy and size:

 (Eq.1)

The second part of the product (the size factor) includes a
factor x which has to be set to an arbitrary big number.
Thus, when the size of the tree is small the size factor is
near one, while it decreases when the tree grows big. This
way, the payoff is greater for smaller trees.

The size factor can be altered to match individual needs.
For example, if we had set x to 1,000,000 then the GA
would search inside a bigger search space (more trees).
However, bigger search spaces inevitably mean less
optimized trees for a fixed number of generations.
Alternative size factors can be used that would prefer trees
with sizes inside some range (assuming that we know that
the target concept can be represented with a decision tree of
a specific size). This could lead to more efficient search and
thus less time for the GA to converge.

2.3 ADVANCED SYSTEM CHARACTERISTICS

To reduce the overcrowding problem (Goldberg, 1989) we
used a scaled payoff function, which aimed at reducing the
similarity of decision trees on the population. When there

were many decision trees with similar characteristics2 we
reduced their payoff function.

Furthermore, we implemented several alternative crossover
and mutation functions. An interesting alternative crossover
used a bias evolution towards more fit subtrees. We
implemented a data structure that kept for every node the
correct/incorrect classified instances passing from it. That
information was used to alter the probability with which a
node was chosen for mutation or crossover. More accurate
subtrees had less chance to be used for crossover or
mutation.

To speed up evolution we also implemented an altered
version of Limited Error Fitness (LEF) (Gathercole & Ross,
1997). This technique introduces an error limit. If the
number of errors of an individual, during the process of
evolution, is higher than the error l imit, all remaining cases
are treated as errors. This means that poor individuals will
not be evaluated on the entire training set, saving CPU
time. With moderate usage of the error limit we were able
to produce significant CPU timesavings and insignificant
accuracy loses.

To test the effectiveness of all those components we further
implemented a second layer genetic algorithm. The
genomes of this algorithm included coded information
about the mutation/crossover rates and different heuristics
as well as a number of other optimizing parameters. The
second layer was tested using several datasets to ensure
result robustness. Some of the most recurring results were a
mutation rate of 0.005, a crossover rate of 0.93, the need to
use a crowding avoidance technique and the fact that
alternative mutations/crossovers did not produce significant
improvements compared to the basic mutation/crossover
operators.

2.4 SEARCH SPACE AND INDUCTION COSTS

The size of search space depends on tree size. Let D(n) be
the number of topologically different binary decision trees
of n leaves. It has been proven (Fayyad, 1991) that:

(Eq. 2)

The search space depends also on the amount of different
attribute-values and classes of the underlying concept.
Suppose that � is the sum of the distinct values3 of all
features and that c is the distinct problem classes. Since we
use binary decision trees the number of internal nodes is n-
1. An internal node can use any one of the � distinct values
and that holds for every node. Since we allow values to be

2 Similarity of decision trees was estimated using the formula:
 tree_diff = |(levels_tree1-levels_tree2)+(nodes_tree1-nodes_tree2)|.
3 We assume only nominal attributes. For continuous ones the search space
is enormously bigger since the possible test values inside a min-max range
are infinite.

D n

n

n

n

n
n() � ���

��� ��
	 �
� ���

0 0
1 2 2

1
0

Chosen Node

Chosen Node

Figure 2. Crossover Examples

 4

nn cnDcnT **)(),,(1�� ��

�
�� k

1n

,c)T(n,cS(k, ��),

reused, a binary decision tree of n leaves has �n-1
syntactically different trees regarding the attribute values.
This has to be multiplied with the cn syntactically different
decision trees regarding the problem classes. Therefore, the
total number of syntactically different binary decision trees
of n leaves is:

 (Eq.3)

When we search for a specific tree we do not stick to trees
with specific number of leaves; instead we search on a
space containing a wide range of tree sizes. Assuming that
the number of training instances is k, the maximum number
of leaves is also k (one instance at every leaf). Thus, the
size of the search space is:

(Eq.4)

A serial search for the best tree is prohibitive even under
very restrictive situations. Suppose that we set k to a small
number (e.g., 10) and that we have a rather simple concept
to learn (2 attributes with 3 different values for each and 2
problem classes). We further reduce the space size by
considering only the possible decision trees for n=10 (even
though we should consider all the trees for n � [1,10]). This
gives, T(10,6,2) = 4862.69.210 = 50,173,704,142,848. Any
search algorithm has to do better then successively test
every possible tree.

It can be proven (Quinlan, 1986) that feature selection at a
node of greedily induced trees, has complexity O(ak) for a
features and k instances. In contrast, one-level lookahead’s
complexity is O(a2k2) (Murthy and Salzberg, 1995), or
more generally O(adkd) for d-1 levels of lookahead. Those
factors are the dominant ones during decision tree induction
since subsequent future selection are based on a partitioned
dataset and the number of nodes cannot be greater than the
number of instances.

The cost of the proposed heuristic is based on four different
factors: the number of generations (gen), the number of
genomes that are evaluated in the population (pop), the
number of instances (k) and the average path an instance
has to follow from the root to a leaf (avPath). Then the cost
of the algorithm is: gen *

 pop*
 k * avPath. Quite safely, the

pop parameter can be set to a constant multiplier of the
number of dataset features a (pop = c1a) with c1 << a.
Furthermore, under a very pessimistic higher boundary we
can set avPath to k. With those assumption, the complexity
of the algorithm is O(gen* k

2
*a). Appendix A presents an

extension over the basic algorithm that caches previous
classifications and can lower the basic complexity to
O(gen*k*a) especially when the derived trees become large.
One cannot precisely express the generations needed for
convergence since they depend on the complexity of the
underlying concept. However, since the GA evolves
complete solutions, the algorithm can be terminated
whenever necessary. One should also not forget that GAs

are highly parallel procedures, and thus, even lower
absolute time requirements are possible using a parallel
evolution. Another advantage of this procedure is that the
output is not just a decision tree but also a collection of
decision trees that can be used alternatively or collectively.

3 EXPERIMENTS

Our first aim was to examine the rate with which GATree
produces fit hypotheses for target concepts. To ensure
complexity variety we used several artificial datasets that
were constructed using DataGen; a program that uses
random rules to generate artificial instance-sets (Melli,
1999). The goal was then to use those sets to reconstruct the
underlying knowledge.

For the cross validation experiments we used WEKA; a
library of Machine Learning Algorithms in Java (Witten &
Frank, 2000). We made use of WEKA’s implementations
for two known classifiers; the C4.5 implementation
(Quinlan, 1993) with binary decision trees and the OneR
implementation (Holte, 1993). The parameters for those
classifiers were chosen to be the default ones used by
WEKA (Version 3.1.6).

Cross-validation was first performed on a number of
artificial datasets explicitly designed to demonstrate some
of GATree’s benefits over greedy heuristics. Then, we
compared its performance against C4.5 and OneR over
several discretized datasets. C4.5 and OneR have different
representational bias: C4.5 is biased towards accuracy (and
secondarily size) while OneR is biased towards extremely
simple classification rules (and secondarily accuracy). We
demonstrate that their derived hypotheses can unnecessarily
deviate from the dual goal (under straightforward
assumptions). We argue that this deviation is partly because
of their inappropriate procedural bias and thus, can be
reduced using global metrics of tree quality. For all
comparisons, we adopted a standard 5-fold cross-validation.

A problem with GAs is the diversity of the obtained results
due to factors like the initial random seed, the initial
population and number of generations. The diversity may
be surprisingly high for complex search spaces given that
we have limited resources (limited number of genomes and
generations). Instead of using a big number of generations
and an equally big number of genomes, we adopted a
diverse strategy that uses relatively few generations and a
small number of genomes but repeats the learner several
times. For every output of the cross-validation experiments
we repeated the algorithm 10 times and then picked the
highest fit genome (based on training set). For every
experiment we present the standard deviation between
cross-validation runs.

Experiments showed that the dominant cost factors are the
number of genomes, the number of generations, the factor x
and the number of instances. An evolution consisting of
200 generations with 200 genomes on a 1000 instances

 5

dataset (20 attributes, 100 attribute-value pairs) with factor
x set to 10000 takes approximately 30 seconds on a
Pentium III 600Mhz. The same dataset takes about 3
seconds to be evaluated using Weka’s C4.5. With a
constant x factor we may expect trees of similar sizes
throughout evolution. Thus, if we double generations,
population or instances the needed time for evolution will
be doubled too. Although it is clear that the current form of
the algorithm cannot be scaled easily to really large
datasets, it can be used with most UCI like datasets without
processing power being a real problem.

The algorithm’ s parameters during the experiments are
presented in Table 1. We have chosen to use overlapping
populations; every generation replaces 25% of the worst
individuals of the previous one. The initial population was
set to 200 even though it can vary depending on the
complexity of the target concept. The number of
generations was fixed to 200 for all cross validation
experiments. The mutation and crossover rates were set to
0.005 and 0.93 accordingly, based on the second layer
feedback. We used the basic form of mutation and
crossover operators. In order to allow reproducibility we
initialized the random generator using the value
123456789.

The factor x was set to 1000 for the experiments with
standard datasets. A small factor x means a bias towards
small trees. However this bias is flexible since the
algorithm may deviate from it (only as much is needed) to
produce an acceptable hypothesis. For all other experiments
we set the factor x to 10000 (emphasis on accuracy).

Table 1. Experiments Parameters
Evolution Type Generational
Initial Population 200
Generations 200 – 800
Generation Gap 25 %
Mutation Probability 0.005
Crossover Probability 0.93
Size Factor 1000-10000
Random Seed 123456789

3.1 HYPOTHESES FITNESS

To ensure that the GA produces fit hypotheses we tested its
performance with two synthetic datasets. Both datasets had
3 attributes (A, B, C), that could take up to 26 distinct
values (a…z) and 3 problem classes (c1, c2, c3). For those
experiments we set the number of generations to 800.

The exact activation rules of the first synthetic dataset are
presented below:

(31.0%) c1 � B=(f or g or j) & C=(a or g or j)
(28.0%) c2 � C=(b or e)
(41.0%) c3 � B=(b or i) & C=(d or i)

Attribute A is not used by any activation rule and, thus, its
main influence is as noise.
Although the target concept is not very complicated, the
search space is huge. Figure 3 presents the results obtained

using GATree with 100 random instances of the
abovementioned concept.

Mean fitness refers to the average fitness score of all
genomes inside the current population. Fitness is the fitness
score of the best individual. Accuracy is the obtained
classification accuracy using the best genome and Size is
the number of nodes of the best individual.

The algorithm quickly (in less than 100 generations) finds a
maximum fit hypothesis and then (for about 80 generations)
makes minor adjustments adopting smaller trees that
guarantee the obtained accuracy.

More complex problems may not converge to maximum fit
hypotheses. Often the misclassified instances would be
those that create an exception to the underlying concept
characteristics and thus, by not creating a rule to classify
them, we produce a more fit hypothesis for test data (this
can be viewed as a form of flexible pruning). However, on
noisy datasets, oversearching may produce overfitted trees.
In such situations we could either use alternate size fitness
functions (which somehow avoid the incorporation of
noise) or post-process the derived trees with a pruning
technique.

Figure 4 presents the results for a more complex artificial
dataset. The dataset was created using eight rules (in
contrast with the three rules of the first dataset).
Furthermore, the rules had more complex structures,
adopting more disjunctions per rule. The first two
activation-rules were as below:

(15.0 %) c1 � A=(a or b or t) & B=(a or h or q or x)
(14.0%) c1 � B=(f or l or s or w) & C=(c or e or f or k)

0 ,1

0 ,2

0 ,3

0 ,4

0 ,5

0 ,6

0 ,7

0 ,8

0 ,9

1

10 70 130

190

250

310

370

430

490

550

610

670

730

790

Ge n e r a t io n s

F
it

n
es

s
-

A
cc

u
ra

cy

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

2 2 0

2 4 0

2 6 0

2 8 0

3 0 0

S
iz

e

M e a n F i tn e s s
F i tn e s s
Ac c u ra c y
S ize

Figure 3. Results for the simple concept

0 , 1

0 , 2

0 , 3

0 , 4

0 , 5

0 , 6

0 , 7

0 , 8

0 , 9

1

10 70 130

190

250

310

370

430

490

550

610

670

730

790

Ge n e r a t io n s

F
it

n
es

s
-

A
cc

u
ra

cy

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

2 2 0

2 4 0

2 6 0

2 8 0

3 0 0

S
iz

e

M e a n F i tn e s s
F i tn e s s
Ac c u ra c y
S ize

Figure 4. Results for the complex concept

 6

Evidently GATree had a harder time to find a fit
hypothesis. More search had to be done, inside bigger and
more complex trees. An interesting part of the graph is the
size peaks that appeared during searching. For example,
between the 370th and 430th generation the size of the tree
was overly expanded and then reduced. Such peaks identify
an upper l imit in the accuracy of the produced tree that
needed a hypothesis jump in order for the evolution to
continue. Such regions may also indicate problematic
points for greedy heuristics, since they specify local
maximums.

A diminishing returns effect is evident on those graphs.
GATree was quick to produce relatively fit hypotheses but
subsequent generations showed a slowly attained progress.
This also indicates that, even though GAs get very close to
the global optimum it is very expensive to exactly reach it.
Probably it would be wiser to use an alternate strategy to
fine-tune the result.

3.2 CONDI TIONALLY DEPENDENT AND
IRRELEVANT ATTRIBUTES

Consider the example data set given in Table 2.

Table 2: Example dataset
A1 A2 A3 Cl ass
T F T T
T F F T
F T F T
F T T T
F F F F
F F F F
T T T F
T T F F

The class value is determined with XOR function on
attributes A1 and A2, while the third attribute A3 is
randomly generated. Although such a concept seams rather
easy, the greedy heuristic of C4.5 falsely estimates that the
contribution of A3 is the highest among the three attributes.
Moreover, C4.5 estimates that the contribution of the A1,
A2 is very low. Therefore, C4.5 derives a decision tree with
only one decision node (after pruning) that has the attribute
A3 installed in it. Of course such a decision tree is
unacceptable.

On the other hand, the less greedy strategy of GATree
(which tries to minimize a tree’ s size while at the same time
maximize accuracy) easily discovers the desired decision
tree (Figure 5)

Even if we had prevented C4.5 from pruning the tree, it
would create two replicated, identical to figure 5, subtrees
under the initial A3 node; a substantially bigger, less
comprehensible tree.

In order to further empirically evidence the previous
mentioned deficiency of greedy heuristics, we created
several artificial datasets with strong dependent and
irrelevant attributes. The characteristics of those datasets
are presented in the following table:

Table 3: Artificial datasets characteristics

Name Attrib. Class Function Noise Instanc.
Random
Attributes

Xor1 10
(A1 xor A2) or

(A3 xor A4)
No 100 6

Xor2 10
(A1 xor A2) xor

(A3 xor A4)
No 100 6

Xor3 10
(A1 xor A2) or
(A3 and A4) or

(A5 and A6)

10%
class
error

100 4

Par1 10
Three attributes
parity problem

No 100 7

Par2 10
Four attributes
parity problem

No 100 6

For the experiments we used C4.5 as a typical
representative of greedy induction. The mean accuracy
results of standard 5-fold cross validation are presented in
table 4.

Almost all experiments showed that greedy heuristics could
not efficiently deal with conditionally dependent attributes.
GATree outperformed them in a more than significant
level. However, one of the datasets (Xor3) showed that the
presence of class noise could make GATree deviate from
good predictors.

Table 4: Classification accuracy
 C4.5 GATree

Xor1 67±12.04 100±0

Xor2 53±18.57 90±17.32
Xor3 79±6.52 78±8.37
Par1 70±24.49 100±0
Par2 63±6.71 85±7.91

3.3 EXPERIM ENTS WITH STANDARD DATASETS

Experiments were conducted using several datasets from
the UCI Repository (Blake et al., 2000). Every continuous
attribute was discretized using WEKA’s unsupervised
equal-frequency binning method. The number of bins was
optimized using the entropy minimization criterion. We
decided not to use a supervised (class based) discretization
to artificially produce erroneous, complex search spaces
with irrelevant as well as somewhat mutually dependent
attributes. Table 5 presents the classification accuracy and
the derived decision trees size (with pruning).

GATree was able to produce the most accurate results (on
average) even though the difference with C4.5 is not
significant. However, those results were accompanied by

A1=t

A2=t

tf

A 2=f

ft

Figure 5. The obtained decision tree for the
conditionally dependent attributes

 7

extremely small decision trees (C4.5 produced six times
bigger trees on average).

It is clear that under such noisy datasets OneR can exceed
C4.5 in accuracy, in several datasets. However, in the
general case it performs substantially worse. We attribute
that behaviour to its procedural bias. OneR picks only one
attribute and then branch on its values. However, this
overlooks the fact that there can be several other
informative attributes while, equally crucially, there can be
branches based on irrelevant values.

On the other hand, C4.5 produces good accurate results but
with unnecessarily big trees. Pruning consistently under-
prunes the resulted trees. However, the overly sized trees
cannot be attributed only to the inadequacy of pruning to
predict the optimal pruning level. When a decision tree
induction method prunes away a subtree, it applies a
statistical test that decides whether that subtree is justified
by the data. But that decision has only been applied locally,
in the pruned subtree. Its effect has not been allowed to
percolate further up the tree, perhaps resulting in different
choices being made on attributes to branch on. This is the
dual process of greedy induction; pruning is another hil l-
climbing technique, which can quickly guide to a good
result, or on the other hand, can substantially deviate from
the optimum.

Contrary to greedy induction, GATree produces a dynamic,
small-biased, accuracy/size based tree optimisation. This
procedure is potentially superior to the (treated as
uncorrelated) build-prune procedure of greedy heuristics.
Nevertheless, GATree’s “pruning capabilities” is just a
side effect of its design. It is sti ll open whether there are
better ways to achieve its effect using more precise global
metrics of tree quality.

4 DISCUSSION
GATree can be easily extended to make use of sets of
independent decision tree classifiers. Recall that the
building blocks that (mainly) comprise the final tree are
created during the first step of the algorithm (where it

produces a set of minimal random binary trees) and thus,
those building blocks are different every time we use a
different seed to initialize the random generator. Even when
distinct populations of building blocks cannot substantially
differ between them (when for instance there are not many
attribute-values and/or classes), there is the payoff function
that can be altered to prefer classifiers with different
characteristics. Now, whenever an unknown instance has to
be classified one can decide about its class by using a
majority vote over every decision tree inside the classifier
set.

A basic drawback of GAs, compared with greedy
heuristics, is speed. In order to evolve 500 decision trees for
500 generations with 25% generation gap we have to create
and test 62875 decision trees. Although those trees are
cheap to create and use, the time burden is substantially
bigger than that of other heuristics. A potentially fruitful
idea is in the making for the near future regarding this
issue.

This idea is based on the fact that the crossover/mutation
operators change the tree from a node downwards. Instead
of classifying every instance using the changed tree we can
classify only the instances that belong to the changed-
node’s subtree. That can result in substantial timesavings
when the crossover is near the tree’ s fringe. The extra
burden is additional structures that keep track of every
instance passing from some node, together with node
statistics (how many instances pass from it, how many of
them were correctly classified). Appendix A presents an
estimation on the average percent of instances that may
have to be re-classified using this technique compared to
100% of the original algorithm; it shows a more than
significant decrease in the expected number of added
classifications.

5 CONCLUSION

In this work we have explored how GAs can be used to
directly evolve decision trees. The whole approach is based
on conceptual simplicity, adopting only necessary
extensions to basic GAs and small a priori bias. The
experiments have indicated potential advantages of GAs
over other greedy heuristics especially when there are
irrelevant or strongly dependent attributes. Furthermore,
experiments demonstrated the implications of adopting
greedy procedural biases.

References
Blake, C., Keogh, E., & Merz, J. (2000)

UCI Repository of machine learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine,
Department of Information and Computer Science.

Booker L.B., D.E. Goldberg & J.H. Holland (1989). Classifier Systems
and Genetic Algorithms, Artificial Intelligence, 40, 2, 235-282.

Bot, M., Langdon, W., (2000) Application of Genetic Programming to
Induction of Linear Classification Trees, In proceedings of GECCO
2000.

Table 5 Accuracy Size
 C4.5 OneR GATree C4.5 GATree

Colic 83.84±3.41 81.37±5.36 85.01±4.55 27.4 5.84

Heart-Statlog 74.44±3.56 76.3±3.04 77.48±3.07 39.4 8.28

Diabetes 66.27±3.71 63.27±2.59 63.97±3.71 140.6 6.6

Credit 83.77±2.93 86.81±4.45 86.81±4 57.8 3

Hepatitis 77.42±6.84 84.52±6.2 80.46±5.39 19.8 5.56

Iris 92±2.98 94.67±3.8 93.8±4.02 9.6 7.48

Labor 85.26±7.98 72.73±14.37 87.27±7.24 8.6 8.72

Lymph 65.52±14.63 74.14±7.18 75.24±10.69 28.2 7.96

Breast-Cancer 71.93±5.11 68.17±7.93 71.03±8.34 35.4 6.68

Zoo 90±7.91 43.8±10.47 82.4±4.02 17 10.12

Vote 96.09±3.86 95.63±4.33 95.63±4.33 11 3

Glass 55.24±7.49 43.19±4.33 53.48±4.33 60.2 8.98

Balance-Scale 78.24±4.4 59.68±4.4 71.15±6.47 106.6 8.92

AVERAGES 78.46 72.64 78.75

43.2 7.01

 8

)
2

1
1(

12
),(

1
1

��� ���� l

m
ml

k
lkL

Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. (1984)
Classification and Regression Trees. Wadsworth International Group.

Congdon, C.,B.. (1995). A comparison of genetic algorithms and other
machine learning systems o a complex classification task from common
disease research, Doctoral dissertation, Department of Electrical
Engineering and Computer Science, Univercity of Michigan.

DeJong, K.A., Spears, W. M., & Gordon, D.F. (1993). Using genetic
algorithms for concept learning. Machine Learning, 13, 161-188.

Fayyad, M.U. (1991). On the Induction of Decision Trees for Multiple
Concept Learning, Doctoral dissertation, Department of Electrical
Engineering and Computer Science, Univercity of Michigan.

Garey R., M, and Graham L.,R (1974) Performance bounds on the
splitting algorithm for binary testing. Acta Informatica, 3:347--355.

Gathercole, C., Ross, P., (1997) Tackling the Boolean even N parity
problem with genetic programming and limited-error fitness. Genetic
Program’97: Proceedings of the Second Annual Conference, 119-127.

Goldberg D. (1989). Genetic Algorithms in Search, Optimization &
Machine Learning. Addison-Wesley.

Holte, R.C. (1993). Very simple classification rules perform well on most
commonly used datasets, Machine Learning 11,63-91.

Janikow, C., Z. (1993) A knowledge-intensive genetic algorithm for
supervised learning, Machine Learning, 13,189-228.

Kononenko, I., E. Simec, and M. Robnik-Sikonja (1997). Overcoming the
myopia of inductive learning algorithms with RELIEFF. Applied
Intelligence 7, 39—55

Koza,J.R (1991) Concept formation and decision tree induction using the
genetic programming paradigm. Parallel problem solving from nature.
Springer Verlag, Berlin.

Mantaras., R.S. (1989). ID3 Revisited: A distance based criterion for
attribute selection, Proceedings of Int. Symp. Methodologies for
Intelligent Systems, Charlotte, North Carolina, USA.

Melli, G. (1999). Data Set Generator Program, www.datasetgenerator.com.
Mitchell, T. (1997). Machine Learning. McGraw-Hill Series in Computer

Science.
Murthy, S. & Salzberg, S. (1995), Lookahead and pathology in decision

tree induction, Proceedings of the 14th International Joint Conference
on Artificial Intelligence, Morgan Kaufmann, 1025-1031

Murthy S., K (1998). Automatic construction of decision trees from data:
A multidisciplinary survey. Data Mining and Knowledge Discovery.

Nikolaev N., Slavov V. (1998) Inductive Genetic Programming with
Decision Trees, Intelligent Data Analysis v.2 number 1.

Norton, S., W. (1989). Generating Better Decision Trees. In Proceedings
of the Eleventh International Joint Conference on AI, 800-815.

Quinlan, R. (1986). Induction of decision trees, Machine Learning, 1:81-
106,1986

Quinlan, R. (1993). C4.5: Programs for Machine Learning, Morgan
Kaufmann Publishers, San Mateo, CA.

Quinlan, J. R. and Cameron-Jones, R. M.(1995) Oversearching and
layered search in empirical learning. In Proceedings of the 14th
International Joint Conference on AI,1019-1024, Montreal, Canada.

Ragavan, H. and L. Rendell (1993), Lookahead Feature Construction for
Learning Hard Concepts, Proceedings of the Tenth International
Conference on Machine Learning, Amherst, MA, pp. 252--259 (Morgan
Kaufmann, San Francisco, CA).

Schaffer, C. (1993). Overfitting avoidance as bias, Machine Learning, 10,
153-178

Wall, M. (1996). GAlib: A C++ Library of Genetic Algorithm
Components. M.I.T.

Wilson, S.W. (1986). Classifier system learning of a boolean function.
Cambridge, MA: Rowland Institute for Science.

Witten, I., Frank, E. (2000) Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations. Morgan Kaufmann
Publishers, San Mateo, CA

Appendix

We can estimate the average number of instances that have
to be re-classified as a function of tree levels and the
original number of instances.

This analysis is based on the assumption that instances are
equally distributed between nodes. This means that if a
father-node has k instances, then k/2 instances arrives at
each one of its two children. Another assumption is that
nodes are chosen for crossover or mutation with equal
probability. Therefore, if we have a tree with size n then the
probability of a node to be chosen is 1/n.

Our average analysis deals with the two extremes of binary
decision trees: the linear binary decision tree and the
complete binary decision tree. Let l be the number of levels
of a binary decision tree. Then, a l inear binary tree has l+1
leaves and a total of 2l+1 nodes while a complete binary
decision tree has 2l leaves and a total of 2l+1-1 nodes. Any
other binary decision tree with l levels lies somewhere
between those two ends.

Figure 6 presents the linear and complete binary decision
trees of three levels together with the number of instances
at each node (supposing that instances are equally
distributed and that their total number is k).

If the root node of the complete decision tree was chosen
for crossover/mutation then all k instances should be re-
classified. On the other hand, if a leaf was chosen then only
k/8 instances should be re-classified. Since every node has a
probability to be chosen it can be proven that the
average number of instances that have to be used for the
new hypotheses evaluation is:

Using the same line of though, the average number of
instances that have to be re-classified in a l inear decision
tree is:

We know that the number of instances that have to be re-
classified lies somewhere between those two extreme
averages. For example, in a tree with eight levels we need
to re-classify between 2% and 18% of the initial instances.

k

k/2k/2

k/4 k/4

k/8k/8

k

k/2

k/4

k/8k/8

k/4

k/8k/8

k/2

k/4

k/8k/8

k/4

k/8k/8

Figure 6. Linear and Complete binary decision trees of 3
levels

12

1
1 � l

12

)1(
),(

1 !"# $
l

l
klkC

Acknowledgment
This work was originally conceived and partially done
while the authors were at the Computer Technology
Institute of Patras, Greece. They are currently employed
by AHEAD Relationship Mediators SA, Greece.

