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Abstract 

We explore the use of genetic algorithms to directly 
evolve classification decision trees. We argue on the 
suitability of such a concept learner due to its ability 
to efficiently search complex hypotheses spaces and 
discover conditionally dependent as well as 
irrelevant attributes. The performance of the system 
is measured on a set of artificial and standard 
discretized concept-learning problems and compared 
with the performance of two known algorithms 
(C4.5, OneR). We demonstrate that the derived 
hypotheses of standard algorithms can substantially 
deviate from the optimum. This deviation is partly 
because of their non-universal procedural bias and it 
can be reduced using global metrics of tree quality 
like the one proposed.   

1 INTRODUCTION 

Decision tree induction is a very popular and practical 
method for pattern classification. The construction of 
optimal decision trees has been proven to be NP-complete, 
under several aspects of optimality and even for simple 
concepts (Murthy, 1998). Current inductive learning 
algorithms use variants of impurity functions like 
information gain, gain ratio (Quinlan, 1986), gini-index 
(Breiman et al., 1984), distance measure (de Mantaras, 
1989) to guide the search. Fayyad (1991) discusses several 
deficiencies of impurity measures. He pointed out that 
impurity measures are insensitive to inter-class separation 
and intra-class fragmentation, as well as insensitive to 
permutations of the class probability distribution. Other 
authors (Kononenko et al.,1997) (Ragavan & Rendell, 
1993) indicated that those measures assume that attributes 
are conditionally independent and therefore they have poor 
chances of revealing a good hypothesis in domains with 
strong conditional dependencies between attributes. 
Furthermore, several authors have provided evidence that 
the presence of irrelevant attributes can mislead the 
impurity functions towards producing bigger, less 
comprehensible, more error-prone classifiers.   

This work is an attempt to overcome the use of greedy 
heuristics and search the decision tree space in a more 
natural way. More specifically, we make use of genetic 
algorithms to directly evolve binary decision trees in the 
conquest for the one that most closely matches the target 
concept. On doing so we adopt a natural representation of 
the search space using actual decision trees and not binary 
strings. We couple our objective with a simplification 
motivation. We use GAs to robustly evolve accurate as 
well as simple decision trees.  

Although GAs have been used for classification and 
concept learning tasks (Wilson, 1986) (Goldberg, 1989) 
(Booker et al., 1990) (De Jong et al, 1993) (Janikow, 1993) 
(Congdon, 1995), there is rather little work on their util ity 
as a tool to evolve decision trees1. Close but distinct 
relatives of this work comes from Koza (1991) who points 
out the suitability of the tree genome for decision tree 
building, Bot and Longdon (2000) who used GP techniques 
to evolve linear classification trees and Nikolaev and 
Slavov (1998) who analyzed a global fitness landscape 
structure and its application on decision tree building. 

Since Schaffer (1993) introduced the concept of different 
levels of suitability for learner biases (the fact that no 
algorithm biases can be suitable for every target concept) 
the idea that there is no universally better algorithm is fast 
maturing on the machine learning community. We might do 
better to map different algorithms to different groups of 
problems with practical importance.  

There are several types of biases but here we distinguish 
between preference and procedural bias. A preference bias 
is based on the learner’s behavior while a procedural bias is 
based on the learner’s design. For example, C4.5 is biased 
towards accurate, small trees (preference bias) and uses the 
gain-ratio metric and minimum-error pruning (different 
procedural biases). A preference bias is most often 
desirable since it determines the characteristics of the 
produced tree. On the other hand, an inadequate procedural 
bias may severely affect the quality of the output. The 
proposed search imposes a new weak procedural bias, one 
that allows the concept learner to consider a relative large 
                                                           
1 However, the tree genome has been extensively used in GP to represent 
program parse trees. 
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number of hypotheses, in a relative efficient manner. The 
proposed weak bias employs global metrics of tree quality. 
We thus shift from “how to induce a tree”  (standard, 
impurity-based induction) to “what criteria an induced tree 
must satisfy” . We view setting a policy direction, as 
opposed to how a policy should be implemented, as a de 
facto decrease in bias with significant advantages over 
other highly used procedural biases in complex search 
spaces.  

There is an active debate on whether less greedy heuristics 
can improve the quality of the produced trees. Garey and 
Graham (1974) showed that greedy algorithms can be made 
to perform arbitrarily worse than the optimal. Norton 
(1989) showed that exhaustive lookahead applied to ID3 
reduced tree sizes on average and produced small gains in 
accuracy. Ragavan and Rendell (1993) showed that their 
LFC algorithm that performed both lookahead and 
constructive induction can perform well on tasks involving 
feature interaction. On the other hand, Murthy and Salzberg 
(1995) found that one-level lookahead yield larger, less 
accurate trees on many tasks. Quinlan and Cameron-Jones 
(1995) reported similar findings and hypothesized that 
lookahead can yield “ fluke theories”  that fit the training 
data but have poor predictive accuracy.  

Genetic algorithms are neither hill-climbing systems nor 
exhaustive searchers. Rather, they are a type of beam 
search. When tuned properly GAs can aggregate desired 
characteristics of both hill-climbing and exhaustive search 
algorithms.  

The rest of this paper is organized in three sections. In the 
next section we elaborate on the construction of the 
proposed system (GATree) and the modifications to the 
standard mutation-crossover operators. We then 
demonstrate via an experimental session that the proposed 
search procedure indeed works and point out some of its 
benefits. Finally, we put all the details together identifying 
good points or possible pitfalls and discussing lines of 
research that have been deemed worthy of following. 

2 THE GATree SYSTEM 

In order to apply GAs to a particular problem, we need to 
select an internal representation of the space to be searched 
combined with an external evaluation function, which 
assigns scores to candidate solutions. Traditionally, GAs 
use binary strings to represent points in search space. 
However, such representations do not appear well suited for 
representing the space of concept descriptions that are 
generally symbolic in nature and with varying length and 
complexity. 

There are two different approaches one might take to 
resolve this issue. The first involves changing the 
fundamental GA operators so as to work well with the 
complex non-string objects, while the second attempts to 

construct string representations of solutions that minimize 
any changes to the basic GA philosophy.  

We stuck with the first approach for two fundamental 
reasons. First, it is natural to use a tree structure to represent 
decision trees and the mutation-crossover operators can be 
efficiently altered to match this structure. Second, it is not 
trivial to alter the basic mutation-crossover operators so as 
to be used with string representatives of decision trees and 
at the same time preserve trees structures.  

For this work we have used GALIB (Wall, 1996), a robust 
C++ library of Genetic Algorithm Components. GALIB 
offers a wide range of internal representations combined 
with easily adjusted parameters so as to optimally tune its 
behavior.  

2.1 DATA PREPROCESSING AND GENETIC 
OPERATORS 

We use GALIB’s tree representation to build a population 
of minimal binary decision trees (trees that consist from one 
node and two leaves). Every decision node has a random 
chosen value as its installed test. This is done in two steps. 
First we choose a random attribute. Then, if that attribute is 
nominal we randomly choose one of its possible values; if it 
is continuous we randomly pick an integer value belonging 
to its min-max range. This approach reduces the size of the 
search space and it is straightforward. Still, it has problems 
with real-valued attributes; for this work we concentrated 
on nominal attributes. Leaves are populated using the same 
line of thought; we just pick a random class from the ones 
available. 

The basic form of the proposed algorithm introduces 
minimum changes to the mutation-crossover operators. 
Mutation chooses a random node of a desired tree and it 
replaces that node’s test-value with a new random chosen 
value. When the random node is a leaf, it replaces the 
installed class with a new random chosen class (Figure 1). 

 

The crossover operator chooses two random nodes and just 
swaps those nodes’  sub-trees. Since predicted values rest 

 Mutated Node

New Test Value

 Mutated Leaf

New Class

Figure 1. Mutation Examples 
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only on leaves, the crossover operator does not affect tree’s 
coherence (Figure 2). 

 

 

 

 

 

 

 

 

 

2.2 PAYOFF FUNCTION 

A natural way to assign util ity to a decision tree is by using 
it to classify the known instance-set. Each tree is granted a 
scaled payoff according to its performance.  We chose to 
grant higher payoffs to smaller trees (assuming that they 
perform almost equally with bigger ones). This is a way to 
avoid unnecessary test-values replications along a specific 
path (an unavoidable side-effect since we do not exclude 
any already used attribute-value from being used again) 
while at the same time we derive comprehensible decision 
trees. Thus, the fitness function is balanced between 
accuracy and size: 

 (Eq.1) 

The second part of the product (the size factor) includes a 
factor x which has to be set to an arbitrary big number. 
Thus, when the size of the tree is small the size factor is 
near one, while it decreases when the tree grows big. This 
way, the payoff is greater for smaller trees.  

The size factor can be altered to match individual needs. 
For example, if we had set x to 1,000,000 then the GA 
would search inside a bigger search space (more trees). 
However, bigger search spaces inevitably mean less 
optimized trees for a fixed number of generations. 
Alternative size factors can be used that would prefer trees 
with sizes inside some range (assuming that we know that 
the target concept can be represented with a decision tree of 
a specific size). This could lead to more efficient search and 
thus less time for the GA to converge. 

2.3 ADVANCED SYSTEM  CHARACTERISTICS 

To reduce the overcrowding problem (Goldberg, 1989) we 
used a scaled payoff function, which aimed at reducing the 
similarity of decision trees on the population. When there 

were many decision trees with similar characteristics2 we 
reduced their payoff function.  

Furthermore, we implemented several alternative crossover 
and mutation functions. An interesting alternative crossover 
used a bias evolution towards more fit subtrees. We 
implemented a data structure that kept for every node the 
correct/incorrect classified instances passing from it. That 
information was used to alter the probability with which a 
node was chosen for mutation or crossover. More accurate 
subtrees had less chance to be used for crossover or 
mutation.  

To speed up evolution we also implemented an altered 
version of Limited Error Fitness (LEF) (Gathercole & Ross, 
1997). This technique introduces an error limit. If the 
number of errors of an individual, during the process of 
evolution, is higher than the error l imit, all remaining cases 
are treated as errors. This means that poor individuals will 
not be evaluated on the entire training set, saving CPU 
time. With moderate usage of the error limit we were able 
to produce significant CPU timesavings and insignificant 
accuracy loses. 

To test the effectiveness of all those components we further 
implemented a second layer genetic algorithm. The 
genomes of this algorithm included coded information 
about the mutation/crossover rates and different heuristics 
as well as a number of other optimizing parameters. The 
second layer was tested using several datasets to ensure 
result robustness. Some of the most recurring results were a 
mutation rate of 0.005, a crossover rate of 0.93, the need to 
use a crowding avoidance technique and the fact that 
alternative mutations/crossovers did not produce significant 
improvements compared to the basic mutation/crossover 
operators. 

2.4 SEARCH SPACE AND INDUCTION COSTS 

The size of search space depends on tree size. Let D(n) be 
the number of topologically different binary decision trees 
of n leaves. It has been proven (Fayyad, 1991) that: 

 

(Eq. 2) 

The search space depends also on the amount of different 
attribute-values and classes of the underlying concept. 
Suppose that � is the sum of the distinct values3 of all 
features and that c is the distinct problem classes. Since we 
use binary decision trees the number of internal nodes is n-
1. An internal node can use any one of the � distinct values 
and that holds for every node. Since we allow values to be 

                                                           
2 Similarity of decision trees was estimated using the formula: 
 tree_diff = |(levels_tree1-levels_tree2)+(nodes_tree1-nodes_tree2)|.  
3 We assume only nominal attributes. For continuous ones the search space 
is enormously bigger since the possible test values inside a min-max range 
are infinite. 
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Figure 2. Crossover Examples 
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reused, a binary decision tree of n leaves has �n-1 
syntactically different trees regarding the attribute values. 
This has to be multiplied with the cn syntactically different 
decision trees regarding the problem classes. Therefore, the 
total number of syntactically different binary decision trees 
of n leaves is: 

 (Eq.3) 

When we search for a specific tree we do not stick to trees 
with specific number of leaves; instead we search on a 
space containing a wide range of tree sizes. Assuming that 
the number of training instances is k, the maximum number 
of leaves is also k (one instance at every leaf). Thus, the 
size of the search space is: 

 
(Eq.4) 

A serial search for the best tree is prohibitive even under 
very restrictive situations. Suppose that we set k to a small 
number (e.g., 10) and that we have a rather simple concept 
to learn (2 attributes with 3 different values for each and 2 
problem classes). We further reduce the space size by 
considering only the possible decision trees for n=10 (even 
though we should consider all the trees for n � [1,10]). This 
gives, T(10,6,2) = 4862.69.210 = 50,173,704,142,848. Any 
search algorithm has to do better then successively test 
every possible tree. 

It can be proven (Quinlan, 1986) that feature selection at a 
node of greedily induced trees, has complexity O(ak) for a 
features and k instances. In contrast, one-level lookahead’s 
complexity is O(a2k2) (Murthy and Salzberg, 1995), or 
more generally O(adkd) for d-1 levels of lookahead. Those 
factors are the dominant ones during decision tree induction 
since subsequent future selection are based on a partitioned 
dataset and the number of nodes cannot be greater than the 
number of instances.  

The cost of the proposed heuristic is based on four different 
factors: the number of generations (gen), the number of 
genomes that are evaluated in the population (pop), the 
number of instances (k) and the average path an instance 
has to follow from the root to a leaf (avPath). Then the cost 
of the algorithm is: gen *

 pop*
 k *  avPath. Quite safely, the 

pop parameter can be set to a constant multiplier of the 
number of dataset features a ( pop = c1a ) with c1 << a. 
Furthermore, under a very pessimistic higher boundary we 
can set avPath to k. With those assumption, the complexity 
of the algorithm is O(gen*  k

2
*a). Appendix A presents an 

extension over the basic algorithm that caches previous 
classifications and can lower the basic complexity to 
O(gen*k*a) especially when the derived trees become large. 
One cannot precisely express the generations needed for 
convergence since they depend on the complexity of the 
underlying concept. However, since the GA evolves 
complete solutions, the algorithm can be terminated 
whenever necessary. One should also not forget that GAs 

are highly parallel procedures, and thus, even lower 
absolute time requirements are possible using a parallel 
evolution. Another advantage of this procedure is that the 
output is not just a decision tree but also a collection of 
decision trees that can be used alternatively or collectively. 

3 EXPERIMENTS 

Our first aim was to examine the rate with which GATree 
produces fit hypotheses for target concepts. To ensure 
complexity variety we used several artificial datasets that 
were constructed using DataGen; a program that uses 
random rules to generate artificial instance-sets (Melli, 
1999). The goal was then to use those sets to reconstruct the 
underlying knowledge.  

For the cross validation experiments we used WEKA; a 
library of Machine Learning Algorithms in Java (Witten & 
Frank, 2000). We made use of WEKA’s implementations 
for two known classifiers; the C4.5 implementation 
(Quinlan, 1993) with binary decision trees and the OneR 
implementation (Holte, 1993). The parameters for those 
classifiers were chosen to be the default ones used by 
WEKA (Version 3.1.6). 

Cross-validation was first performed on a number of 
artificial datasets explicitly designed to demonstrate some 
of GATree’s benefits over greedy heuristics. Then, we 
compared its performance against C4.5 and OneR over 
several discretized datasets. C4.5 and OneR have different 
representational bias: C4.5 is biased towards accuracy (and 
secondarily size) while OneR is biased towards extremely 
simple classification rules (and secondarily accuracy).  We 
demonstrate that their derived hypotheses can unnecessarily 
deviate from the dual goal (under straightforward 
assumptions). We argue that this deviation is partly because 
of their inappropriate procedural bias and thus, can be 
reduced using global metrics of tree quality. For all 
comparisons, we adopted a standard 5-fold cross-validation. 

A problem with GAs is the diversity of the obtained results 
due to factors like the initial random seed, the initial 
population and number of generations. The diversity may 
be surprisingly high for complex search spaces given that 
we have limited resources (limited number of genomes and 
generations). Instead of using a big number of generations 
and an equally big number of genomes, we adopted a 
diverse strategy that uses relatively few generations and a 
small number of genomes but repeats the learner several 
times. For every output of the cross-validation experiments 
we repeated the algorithm 10 times and then picked the 
highest fit genome (based on training set). For every 
experiment we present the standard deviation between 
cross-validation runs. 

Experiments showed that the dominant cost factors are the 
number of genomes, the number of generations, the factor x 
and the number of instances. An evolution consisting of 
200 generations with 200 genomes on a 1000 instances 
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dataset (20 attributes, 100 attribute-value pairs) with factor 
x set to 10000 takes approximately 30 seconds on a 
Pentium III 600Mhz. The same dataset takes about 3 
seconds to be evaluated using Weka’s C4.5. With a 
constant x factor we may expect trees of similar sizes 
throughout evolution. Thus, if we double generations, 
population or instances the needed time for evolution will 
be doubled too. Although it is clear that the current form of 
the algorithm cannot be scaled easily to really large 
datasets, it can be used with most UCI like datasets without 
processing power being a real problem. 

The algorithm’ s parameters during the experiments are 
presented in Table 1. We have chosen to use overlapping 
populations; every generation replaces 25% of the worst 
individuals of the previous one. The initial population was 
set to 200 even though it can vary depending on the 
complexity of the target concept. The number of 
generations was fixed to 200 for all cross validation 
experiments.  The mutation and crossover rates were set to 
0.005 and 0.93 accordingly, based on the second layer 
feedback. We used the basic form of mutation and 
crossover operators. In order to allow reproducibility we 
initialized the random generator using the value 
123456789. 

The factor x was set to 1000 for the experiments with 
standard datasets. A small factor x means a bias towards 
small trees. However this bias is flexible since the 
algorithm may deviate from it (only as much is needed) to 
produce an acceptable hypothesis. For all other experiments 
we set the  factor x to 10000 (emphasis on accuracy).  

Table 1. Experiments Parameters 
Evolution Type   Generational 
Initial Population   200 
Generations   200 – 800 
Generation Gap   25 % 
Mutation Probability   0.005 
Crossover Probability   0.93 
Size Factor   1000-10000 
Random Seed   123456789 

3.1 HYPOTHESES FITNESS 

To ensure that the GA produces fit hypotheses we tested its 
performance with two synthetic datasets. Both datasets had 
3 attributes (A, B, C), that could take up to 26 distinct 
values (a…z) and 3 problem classes (c1, c2, c3). For those 
experiments we set the number of generations to 800. 

The exact activation rules of the first synthetic dataset are 
presented below: 

(31.0%) c1 �  B=(f or g or j )  & C=(a or g or j ) 
(28.0%) c2 �  C=(b or e) 
(41.0%) c3 �  B=(b or i) & C=(d or i) 
 
Attribute A is not used by any activation rule and, thus, its 
main influence is as noise. 
Although the target concept is not very complicated, the 
search space is huge. Figure 3 presents the results obtained 

using GATree with 100 random instances of the 
abovementioned concept. 

 

 

 

 

 

 

 

 

 

Mean fitness refers to the average fitness score of all 
genomes inside the current population. Fitness is the fitness 
score of the best individual. Accuracy is the obtained 
classification accuracy using the best genome and Size is 
the number of nodes of the best individual. 

The algorithm quickly (in less than 100 generations) finds a 
maximum fit hypothesis and then (for about 80 generations) 
makes minor adjustments adopting smaller trees that 
guarantee the obtained accuracy.   

More complex problems may not converge to maximum fit 
hypotheses. Often the misclassified instances would be 
those that create an exception to the underlying concept 
characteristics and thus, by not creating a rule to classify 
them, we produce a more fit hypothesis for test data (this 
can be viewed as a form of flexible pruning). However, on 
noisy datasets, oversearching may produce overfitted trees. 
In such situations we could either use alternate size fitness 
functions (which somehow avoid the incorporation of 
noise) or post-process the derived trees with a pruning 
technique.   

Figure 4 presents the results for a more complex artificial 
dataset.  The dataset was created using eight rules (in 
contrast with the three rules of the first dataset). 
Furthermore, the rules had more complex structures, 
adopting more disjunctions per rule. The first two 
activation-rules were as below: 

(15.0 %) c1 �  A=(a or b or t) & B=(a or h or q or x) 
(14.0%) c1 �  B=(f or l or s or w) & C=(c or e or f or k) 
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Figure 3. Results for the simple concept 
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Evidently GATree had a harder time to find a fit 
hypothesis. More search had to be done, inside bigger and 
more complex trees. An interesting part of the graph is the 
size peaks that appeared during searching. For example, 
between the 370th and 430th generation the size of the tree 
was overly expanded and then reduced. Such peaks identify 
an upper l imit in the accuracy of the produced tree that 
needed a hypothesis jump in order for the evolution to 
continue. Such regions may also indicate problematic 
points for greedy heuristics, since they specify local 
maximums. 

A diminishing returns effect is evident on those graphs. 
GATree was quick to produce relatively fit hypotheses but 
subsequent generations showed a slowly attained progress. 
This also indicates that, even though GAs get very close to 
the global optimum it is very expensive to exactly reach it. 
Probably it would be wiser to use an alternate strategy to 
fine-tune the result. 

3.2 CONDI TIONALLY DEPENDENT AND 
IRRELEVANT ATTRIBUTES 

Consider the example data set given in Table 2. 

Table 2: Example dataset 
A1 A2 A3 Cl ass 
T F T T 
T F F T 
F T F T 
F T T T 
F F F F 
F F F F 
T T T F 
T T F F 

 
The class value is determined with XOR function on 
attributes A1 and A2, while the third attribute A3 is 
randomly generated. Although such a concept seams rather 
easy, the greedy heuristic of C4.5 falsely estimates that the 
contribution of A3 is the highest among the three attributes. 
Moreover, C4.5 estimates that the contribution of the A1, 
A2 is very low. Therefore, C4.5 derives a decision tree with 
only one decision node (after pruning) that has the attribute 
A3 installed in it. Of course such a decision tree is 
unacceptable. 

On the other hand, the less greedy strategy of GATree 
(which tries to minimize a tree’ s size while at the same time 
maximize accuracy) easily discovers the desired decision 
tree (Figure 5) 

 

 

 

 

 

Even if we had prevented C4.5 from pruning the tree, it 
would create two replicated, identical to figure 5, subtrees 
under the initial A3 node; a substantially bigger, less 
comprehensible tree. 

In order to further empirically evidence the previous 
mentioned deficiency of greedy heuristics, we created 
several artificial datasets with strong dependent and 
irrelevant attributes. The characteristics of those datasets 
are presented in the following table: 

Table 3: Artificial datasets characteristics 

Name Attrib. Class Function Noise Instanc. 
Random 
Attributes 

Xor1 10 
(A1 xor  A2) or  

(A3 xor  A4) 
No 100 6 

Xor2 10 
(A1 xor  A2) xor  

(A3 xor  A4) 
No 100 6 

Xor3 10 
(A1 xor  A2) or  
(A3 and A4) or  

(A5 and A6) 

10% 
class 
error 

100 4 

Par1 10 
Three attributes 
parity problem 

No 100 7 

Par2 10 
Four attributes 
parity problem 

No 100 6 

For the experiments we used C4.5 as a typical 
representative of greedy induction. The mean accuracy 
results of standard 5-fold cross validation are presented in 
table 4. 

Almost all experiments showed that greedy heuristics could 
not efficiently deal with conditionally dependent attributes. 
GATree outperformed them in a more than significant 
level. However, one of the datasets (Xor3) showed that the 
presence of class noise could make GATree deviate from 
good predictors. 

Table 4: Classification accuracy 
 C4.5 GATree 

Xor1 67±12.04 100±0 

Xor2 53±18.57 90±17.32 
Xor3 79±6.52 78±8.37 
Par1 70±24.49 100±0 
Par2 63±6.71 85±7.91 

3.3 EXPERIM ENTS WITH STANDARD DATASETS 

Experiments were conducted using several datasets from 
the UCI Repository (Blake et al., 2000). Every continuous 
attribute was discretized using WEKA’s unsupervised 
equal-frequency binning method. The number of bins was 
optimized using the entropy minimization criterion. We 
decided not to use a supervised (class based) discretization 
to artificially produce erroneous, complex search spaces 
with irrelevant as well as somewhat mutually dependent 
attributes. Table 5 presents the classification accuracy and 
the derived decision trees size (with pruning). 

GATree was able to produce the most accurate results (on 
average) even though the difference with C4.5 is not 
significant. However, those results were accompanied by 

A1=t

A2=t

tf

A 2=f

ft

Figure 5. The obtained decision tree for the 
conditionally dependent attributes 
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extremely small decision trees (C4.5 produced six times 
bigger trees on average).  

It is clear that under such noisy datasets OneR can exceed 
C4.5 in accuracy, in several datasets. However, in the 
general case it performs substantially worse. We attribute 
that behaviour to its procedural bias. OneR picks only one 
attribute and then branch on its values. However, this 
overlooks the fact that there can be several other 
informative attributes while, equally crucially, there can be 
branches based on irrelevant values. 

On the other hand, C4.5 produces good accurate results but 
with unnecessarily big trees. Pruning consistently under-
prunes the resulted trees. However, the overly sized trees 
cannot be attributed only to the inadequacy of pruning to 
predict the optimal pruning level. When a decision tree 
induction method prunes away a subtree, it applies a 
statistical test that decides whether that subtree is justified 
by the data. But that decision has only been applied locally, 
in the pruned subtree. Its effect has not been allowed to 
percolate further up the tree, perhaps resulting in different 
choices being made on attributes to branch on. This is the 
dual process of greedy induction; pruning is another hil l-
climbing technique, which can quickly guide to a good 
result, or on the other hand, can substantially deviate from 
the optimum. 

Contrary to greedy induction, GATree produces a dynamic, 
small-biased, accuracy/size based tree optimisation. This 
procedure is potentially superior to the (treated as 
uncorrelated) build-prune procedure of greedy heuristics. 
Nevertheless, GATree’s  “pruning capabilities”  is just a 
side effect of its design. It is sti ll open whether there are 
better ways to achieve its effect using more precise global 
metrics of tree quality. 

4 DISCUSSION 
GATree can be easily extended to make use of sets of 
independent decision tree classifiers. Recall that the 
building blocks that (mainly) comprise the final tree are 
created during the first step of the algorithm (where it 

produces a set of minimal random binary trees) and thus, 
those building blocks are different every time we use a 
different seed to initialize the random generator. Even when 
distinct populations of building blocks cannot substantially 
differ between them (when for instance there are not many 
attribute-values and/or classes), there is the payoff function 
that can be altered to prefer classifiers with different 
characteristics. Now, whenever an unknown instance has to 
be classified one can decide about its class by using a 
majority vote over every decision tree inside the classifier 
set. 

A basic drawback of GAs, compared with greedy 
heuristics, is speed. In order to evolve 500 decision trees for 
500 generations with 25% generation gap we have to create 
and test 62875 decision trees. Although those trees are 
cheap to create and use, the time burden is substantially 
bigger than that of other heuristics. A potentially fruitful 
idea is in the making for the near future regarding this 
issue.  

This idea is based on the fact that the crossover/mutation 
operators change the tree from a node downwards. Instead 
of classifying every instance using the changed tree we can 
classify only the instances that belong to the changed-
node’s subtree. That can result in substantial timesavings 
when the crossover is near the tree’ s fringe. The extra 
burden is additional structures that keep track of every 
instance passing from some node, together with node 
statistics (how many instances pass from it, how many of 
them were correctly classified). Appendix A presents an 
estimation on the average percent of instances that may 
have to be re-classified using this technique compared to 
100% of the original algorithm; it shows a more than 
significant decrease in the expected number of added 
classifications.  

5 CONCLUSION 

In this work we have explored how GAs can be used to 
directly evolve decision trees. The whole approach is based 
on conceptual simplicity, adopting only necessary 
extensions to basic GAs and small a priori  bias. The 
experiments have indicated potential advantages of GAs 
over other greedy heuristics especially when there are 
irrelevant or strongly dependent attributes. Furthermore, 
experiments demonstrated the implications of adopting 
greedy procedural biases.  
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Appendix 

We can estimate the average number of instances that have 
to be re-classified as a function of tree levels and the 
original number of instances.  

This analysis is based on the assumption that instances are 
equally distributed between nodes. This means that if a 
father-node has k instances, then k/2 instances arrives at 
each one of its two children. Another assumption is that 
nodes are chosen for crossover or mutation with equal 
probability. Therefore, if we have a tree with size n then the 
probability of a node to be chosen is 1/n.  

Our average analysis deals with the two extremes of binary 
decision trees: the linear  binary decision tree and the 
complete binary decision tree. Let l be the number of levels 
of a binary decision tree. Then, a l inear binary tree has l+1 
leaves and a total of 2l+1 nodes while a complete binary 
decision tree has 2l leaves and a total of 2l+1-1 nodes. Any 
other binary decision tree with l levels lies somewhere 
between those two ends. 

Figure 6 presents the linear and complete binary decision 
trees of three levels together with the number of instances 
at each node (supposing that instances are equally 
distributed and that their total number is k). 

If the root node of the complete decision tree was chosen 
for crossover/mutation then all k instances should be re-
classified. On the other hand, if a leaf was chosen then only 
k/8 instances should be re-classified. Since every node has a 
probability              to be chosen it can be proven that the 
average number of instances that have to be used for the 
new hypotheses evaluation is: 

Using the same line of though, the average number of 
instances that have to be re-classified in a l inear decision 
tree is: 

We know that the number of instances that have to be re-
classified lies somewhere between those two extreme 
averages. For example, in a tree with eight levels we need 
to re-classify between 2% and 18% of the initial instances.  
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Figure 6.  Linear and Complete binary decision trees of 3 
levels 
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