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Abstract 

We explore the use of genetic algorithms to directly evolve classification decision trees. Instead of 
using binary strings, we adopt a natural representation of the problem using binary tree structures. 
We argue on the suitability of such a concept learner due to its ability to efficiently search complex 
hypotheses spaces and discover conditionally dependent as well as irrelevant attributes. The 
performance of the system is measured on a set of artificial and standard discretized concept learning 
problems and compared with the performance of two known algorithms (C4.5, OneR). We 
demonstrate that the derived hypotheses of standard algorithms can substantially deviate from the 
optimum. This deviation is partly due to their non-universal procedural bias which can be reduced 
using global metrics of tree quality like the one proposed.   

1 INTRODUCTION 

Genetic Algorithms (GAs) have been widely used as an effective search technique, especially when 

the search space contains complex interacting parts.  Rather than search from general-to-specific or 

from simple-to-complex hypotheses, GAs generate successor hypotheses by repeatedly mutating 

and recombining parts of the best currently known hypotheses.  

On the other hand, decision tree induction is a very popular and practical method for pattern 

classification. It has been successfully applied to a broad range of tasks from learning to diagnose 

medical cases to learning to assess credit risk of loan applicants.  

The construction of optimal decision trees has been proven to be NP-complete, under several 

aspects of optimality and even for simple concepts (Murthy, 1998). This led to the development of 

several heuristic search strategies that aimed to tackle the combinatorial explosion during the search 

for good hypotheses. Current inductive learning algorithms use variants of impurity functions like 

information gain, gain ratio (Quinlan, 1986), gini-index (Breiman et al., 1984), distance measure 

(de Mantaras, 1989), j-measure (Smyth & Goldman, 1990) to guide the search. Fayyad (1991) 

discusses several deficiencies of impurity measures. He pointed out that impurity measures are 
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insensitive to inter-class separation and intra-class fragmentation, as well as insensitive to 

permutations of the class probability distribution (the information paradox (Smith & Goodman, 

1991)). Other authors (Kononenko et al.,1997) (Ragavan & Rendell, 1993) indicated that those 

measures assume that attributes are conditionally independent and therefore they have poor chances 

of revealing a good hypothesis in domains with strong conditional dependencies between attributes. 

Furthermore, several authors have provided evidence that the presence of irrelevant attributes can 

mislead the impurity functions towards producing bigger, less comprehensible, more error-prone 

classifiers.   

This work is an attempt to overcome the use of greedy heuristics and search the decision tree space 

in a more natural way. More specifically, we make use of genetic algorithms to directly evolve 

binary decision trees in the conquest for the one that most closely matches the target concept. On 

doing so we adopt a natural representation of the search space using actual decision trees and not 

binary strings. We couple our objective with a simplification motivation. We use GAs to evolve 

accurate as well as simple decision trees.  

Although GAs have been used in a great degree for classification and concept learning tasks 

(Wilson, 1986) (Goldberg, 1989) (Booker et al., 1990) (De Jong et al, 1993) (Janikow, 1993) 

(Congdon, 1995), there is little work on their utility as a tool to evolve decision trees. The closest 

relative of this work comes from Koza (1991) who points out the suitability of the tree genome for 

decision tree building (though he did not proceed on details about the advantages/ disadvantages of 

such a concept learner).  

Most often GAs are related with Decision Trees (or other pattern classification algorithms) as a 

preprocessor for the problem of feature selection. That is, from a large number of features select the 

most suitable ones to be used by the concept classification algorithm. Punch et al. (1993), Turney 

(1995), Vafaie & DeJong (1992), Bala et al. (1995) provided more details on this subject. 

Since Schaffer (1993) introduced the concept of different levels of suitability for learner biases, the 

idea that there is no universally better algorithm is fast maturing on the machine learning 

community. Informally, Schaffer stated that no algorithm biases are suitable for every target 

concept; some concepts might be better represented with extremely small trees or they may have a 
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complex search space optimally represented only after some form of exhaustive search. We might 

do better to map different algorithms to different groups of problems with practical importance.  

Although there are several types of biases, here we distinguish between preference and procedural 

bias. A preference bias is based on the learner’s behavior while a procedural bias is based on the 

learner’s design. For example, C4.5 is biased towards accurate, small trees (preference bias) and 

uses the gain-ratio metric and minimum-error pruning (different procedural biases). A preference 

bias is most often desirable since it determines the characteristics of the produced tree. On the other 

hand, an inadequate procedural bias may severely affect the quali ty of the output. The proposed 

search imposes a new weak procedural bias, one that allows the concept learner to consider a 

relative large number of hypotheses, in a relative eff icient manner. The proposed weak bias 

employs global metrics of tree quality. We thus shift from “how” to induce a tree (standard, 

impurity-based induction) to “what criteria an induced tree must satisfy” . We view setting a policy 

direction, as opposed to how a policy should be implemented, as a de facto decrease in bias with 

significant advantages over other highly used procedural biases in complex search spaces.  

There is an active debate on the machine learning community on whether less greedy heuristics can 

improve the quality of the produced trees. Garey and Graham (1974) showed that greedy algorithms 

using information theoretic splitting criteria can be made to perform arbitrarily worse than the 

optimal. Norton (1989) showed that exhaustive lookahead applied to ID3 reduced tree sizes on 

average and produced small gains in accuracy, but could be expensive. Ragavan and Rendell (1993) 

showed that their LFC algorithm that performed both lookahead and constructive induction can 

perform well on tasks involving feature interaction. On the other hand, Murthy and Salzberg (1995) 

found that one-level lookahead yield larger, less accurate trees on many tasks (they named this 

situation decision tree pathology). Quinlan and Cameron-Jones (1995) reported similar findings and 

hypothesized that lookahead can yield “ fluke theories” that fit the training data but have poor 

predictive accuracy.  

Genetic algorithms are neither hill-climbing systems nor do they conduct an exhaustive search of 

the space of all possible hypotheses. Rather, they are a type of beam search. The population is the 

beam – the collection of points in the search space from which further search may be conducted. 
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This seems promising regarding their abilit y to aggregate desired characteristics of both hill -

climbing and exhaustive search algorithms.  

The rest of this paper is organized in three sections. In the next section we elaborate on the 

construction of the proposed system (GATree) and the modifications to the standard mutation-

crossover operators. We then demonstrate via an experimental session that the proposed search 

procedure indeed works and point out some of its benefits. Finally, we put all the details together 

identifying good points or possible pitfalls and discussing lines of research that have been deemed 

worthy of following. 

2 THE GATree SYSTEM 

To apply GAs to a particular problem, we need to select an internal representation of the space to be 

searched combined with an external evaluation function, which assigns scores to candidate 

solutions. Both components are critical to the successful application of GAs to the problem of 

interest. 

2.1 REPRESENTATION ISSUES 

Traditionally, GAs use binary strings to represent points in search space. However, such 

representations do not appear well suited for representing the space of concept descriptions that are 

generally symbolic in nature and with varying length and complexity. 

There are two different approaches one might take to resolve this issue. The first involves changing 

the fundamental GA operators so as to work well with the complex non-string objects, while the 

second attempts to construct string representations of solutions that minimize any changes to the 

basic GA philosophy.  

We stuck with the first approach for three fundamental reasons. First, it is natural to use a tree 

structure to represent decision trees and the mutation-crossover operators can be eff iciently altered 

to match this structure. Second, it is not trivial to alter the basic mutation-crossover operators so as 

to be used with string representatives of decision trees and at the same time preserve trees 

structures. Finally, libraries of GA’s components emerge today that give the option of alternative 

internal representations and can substantially decrease the overhead of deriving the needed tuning 

of GA’s operators.  
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For this work we have used GALIB (Wall , 1996), a robust C++ library of Genetic Algorithm 

Components. GALIB offers a wide range of internal representations (including a tree 

representation) combined with easily adjusted parameters so as to optimally tune its behavior.  

2.2 DATA PREPROCESSING AND GENETIC OPERATORS 

We use GALIB’s tree representation to build a population of minimal binary decision trees. That is, 

we build decision trees that have one decision node that leads to two different leaves. Every 

decision node has a random chosen value as its installed test. This is done in two steps. First we 

choose a random attribute. Then, if that attribute is nominal we randomly choose one of its possible 

values; if it is continuous we randomly pick an integer value belonging to its min-max range. This 

approach reduces the size of the search space and it is straightforward. Still , it has problems with 

real-valued attributes; for this work we concentrated on nominal attributes. Leaves are populated 

using the same line of thought; we just pick a random class from the ones available. 

The basic form of the proposed algorithm introduces minimum changes to the mutation-crossover 

operators. Mutation chooses a random node of a desired tree and it replaces that node’s test-value 

with a new random chosen value. When the random node is a leaf, it replaces the installed class 

with a new random chosen class (Figure 1). 

The crossover operator chooses two random nodes and swaps those nodes’ sub-trees. Since 

predicted values rest only on leaves, the crossover operator does not affect the decision tree’s 

coherence (Figure 2). 
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Figure 1. Mutation Examples 
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Figure 2. Crossover Examples 
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2.3 PAYOFF FUNCTION 

Having a population of candidate solutions we need a payoff function (or objective function) to 

assign utility to each one of them. A natural way to assign utility to a random decision tree is by 

using it to classify the known instance-set. Then we grant a scaled payoff to the best candidates. 

Furthermore, we chose to grant higher payoffs to smaller trees (assuming that they perform almost 

equally with bigger ones). This is a way to avoid unnecessary test-values replications along a 

specific path (that can happen since we do not exclude any already used attribute-value from being 

used again) while at the same time we derive comprehensible decision trees. Thus, the fitness 

function is balanced between accuracy and size: 

 

(Eq.1) 

The second part of the product (the size factor) includes a factor x which has to be set to an arbitrary 

big number. Thus, when the size of the tree is small the size factor is near one, while it decreases 

when the tree grows big. This way, the payoff is greater for smaller trees.  

The size factor can be altered to match individual needs. For example, if we had set x to 1,000,000 

then the GA would search inside a bigger search space (more trees). However, bigger search spaces 

inevitably mean less optimized trees for a fixed number of generations. Alternative size factors can 

be used that would prefer trees with sizes inside some range (assuming that we know that the target 

concept can be represented with a decision tree of a specific size). This could lead to more efficient 

search and thus less time for the GA to converge. 

2.4 ADVANCED SYSTEM CHARACTERISTICS 

To reduce the overcrowding problem (Goldberg, 1989) we used a scaled payoff function, which 

aimed at reducing the similarity of decision trees on the population. When there were many decision 

trees with similar characteristics1 we reduced their payoff function.  

Furthermore, we implemented several alternative crossover and mutation functions. An interesting 

alternative crossover used a bias evolution towards more fit subtrees. We implemented a data 

structure that kept for every node the correct/incorrect classified instances passing from it. That 

                                                           
1 To estimate the similarity of different decision trees we used a simple, computationally cheap formula based only on 
the differences between the number of nodes and tree levels.  
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information was used to alter the probability with which a node was chosen for mutation or 

crossover. More accurate subtrees had less chance to be used for crossover or mutation.  

To speed up evolution we also implemented an altered version of Limited Error Fitness (LEF) 

(Gathercole & Ross, 1997). This technique introduces an error limit. If the number of errors of an 

individual, during the process of evolution, is higher than the error limit, all remaining cases are 

treated as errors. This means that poor individuals will not be evaluated on the entire training set, 

saving CPU time. With moderate usage of the error limit we were able to produce significant CPU 

time savings and insignificant accuracy loses. 

To test the effectiveness of all those components we further implemented a second layer genetic 

algorithm. The genomes of this algorithm included coded information about the mutation/crossover 

rates and different heuristics as well as a number of other optimizing parameters. The second layer 

was tested using several datasets to ensure result robustness. Some of the most recurring results 

were a mutation rate of 0.005, a crossover rate of 0.93, the need to use a crowding avoidance 

technique and the fact that alternative mutations/crossovers did not produce significant 

improvements compared to the basic mutation/crossover operators. 

2.5 SEARCH SPACE AND INDUCTION COSTS 

We have set the basic requirements for our genetic algorithm: an appropriate representation for 

possible solutions combined with suitable mutation-crossover operators and a payoff function. Here 

we will come-up with a mathematical formula for the size of search space. This is useful since we 

would like to achieve a good hypothesis ensuring that we have not exhaustively searched the  space.  

The size of search space depends on tree size. Let D(n) be the number of topologically different 

binary decision trees of n leaves. Then, it has been proven by Fayyad (1991) that: 

 

(Eq. 2) 

The search space depends also on the amount of different attribute-values and classes of the 

underlying concept. Suppose that �  is the sum of the distinct values2 of all features and that c is the 

distinct problem classes. Since we use binary decision trees the number of internal nodes is n-1. An 
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internal node can use any one of the �  distinct values and that holds for every node. Since we allow 

values to be reused, a binary decision tree of n leaves has � n-1 syntactically different trees regarding 

the attribute values. This has to be multiplied with the cn syntactically different decision trees 

regarding the problem classes. Therefore, the total number of syntactically different binary decision 

trees of n leaves is: 

 (Eq.3) 

When we search for a specific tree we do not stick to trees with specific number of leaves; instead 

we search on a space containing a wide range of tree sizes. Assuming that the number of training 

instances is k, the maximum number of leaves is also k (one instance at every leaf). Thus, the size of 

the search space is: 

 (Eq.4) 

A serial search for the best tree is prohibitive even under very restrictive situations. Suppose that we 

set k to a small number (e.g., 10) and that we have a rather simple concept to learn (2 attributes with 

3 different values for each and 2 problem classes). We further reduce the space size by considering 

only the possible decision trees for n=10 (even though we should consider all the trees for 

n∈[1,10]). This gives, T(10,6,2) = 4862.69.210 = 50,173,704,142,848. Any search algorithm has to 

do better then successively test every possible tree. 

It can be proven (Quinlan, 1986) that feature selection at a node of greedily induced trees, has 

complexity O(ak) for a features and k instances. In contrast, one-level lookahead’s complexity is 

O(a2k2) (Murthy and Salzberg, 1995), or more generally O(adkd) for d-1 levels of lookahead. Those 

factors are the dominant ones during decision tree induction since subsequent future selection are 

based on a partitioned dataset and the number of nodes cannot be greater than the number of 

instances.  

The cost of the proposed heuristic is based on four different factors: the number of generations 

(gen), the number of genomes that are evaluated in the population (pop), the number of instances (k) 

and the average path an instance has to follow from the root to a leaf (avPath). Then the cost of the 

                                                                                                                                                                                                 
2 We assume only nominal attributes. For continuous ones the search space is enormously bigger since the possible test 
values inside a min-max range are infinite. 
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algorithm is: gen *
 pop*

 k * avPath. Quite safely, the pop parameter can be set to a constant 

multiplier of the number of dataset features a ( pop = c1a ) with c1 << a. Furthermore, under a very 

pessimistic higher boundary we can set avPath to k. With those assumption, the complexity of the 

algorithm is O(gen* k
2

*a). Appendix A presents an extension over the basic algorithm that caches 

previous classifications and can lower the basic complexity to O(gen*k*a) especially when the 

derived trees become large. One cannot precisely express the generations needed for convergence 

since they depend on the complexity of the underlying concept. However, since the GA evolves 

complete solutions, the algorithm can be terminated whenever necessary. One should also not forget 

that GAs are highly parallel procedures, and thus, even lower absolute time requirements are 

possible using a parallel evolution. Another advantage of this procedure is that the output is not just 

a decision tree but a collection of decision trees that can be used alternatively.  

3 EXPERIMENTS 

Our first aim was to examine the rate with which GATree produces fit hypotheses for target 

concepts. Those concepts were chosen to be of varying complexity. To ensure complexity variety 

we used several artificial datasets that were constructed using DataGen; a program that uses random 

rules to generate artificial instance-sets (Melli , 1999). The goal was then to use those sets to 

reconstruct the underlying knowledge.  

For the cross validation experiments we used WEKA; a library of Machine Learning Algorithms in 

Java (Witten & Frank, 2000). More specifically, we made use of WEKA’s implementations for two 

known classifiers; the C4.5 implementation (Quinlan, 1993) with binary decision trees and the 

OneR implementation (Holte, 1993). The parameters for those classifiers were chosen to be the 

default ones used by WEKA (Version 3.1.6). 

Cross-validation was first performed on a number of artificial datasets explicitly designed to 

demonstrate some of GATree’s benefits over greedy heuristics. Then, we compared its performance 

against C4.5 and OneR over several discretized datasets. C4.5 and OneR have different 

representational bias: C4.5 is biased towards accuracy (and secondarily size) while OneR is biased 

towards extremely simple classification rules (and secondarily accuracy).  We demonstrate that 

their derived hypotheses can unnecessarily deviate from the dual goal (under straightforward 

assumptions). Furthermore, we argue that this deviation is partly because of their inappropriate 
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procedural bias and thus, can be reduced using global metrics of tree quality. For all comparisons, 

we adopted a standard 5-fold cross-validation. 

A problem with GAs is the diversity of the obtained results due to factors like the initial random 

seed, the initial population and number of generations. The diversity may be surprisingly high for 

complex search spaces given that we have limited resources (limited number of genomes and 

generations). Instead of using a big number of generations and an equally big number of genomes, 

we adopted an alternative strategy that uses relatively few generations and a small number of 

genomes but repeats the learner several times. For every output of the cross-validation experiments 

we repeated the algorithm 10 times and then picked the highest fit genome (based on training set).  

The algorithm’s parameters during the experiments are presented in Table 1. We have chosen to use 

overlapping populations; every generation replaces 25% of the worst individuals of the previous 

one. The initial population was set to 200 even though it can vary depending on the complexity of 

the target concept. The number of generations was fixed to 200 for all cross validation experiments.  

The mutation and crossover rates were set to 0.005 and 0.93 accordingly, based on the second layer 

feedback. In order to allow reproducibil ity we initialized the random generator using the value 

123456789. 

The factor x was set to 1000 for the experiments with standard datasets. A small factor x means a 

bias towards small trees. However this bias is flexible since the algorithm may deviate from it (only 

as much is needed) to produce an acceptable hypothesis. For all other experiments we set the  factor 

x to 10000 (emphasis on accuracy). 

 

Table 1. Experiments Parameters 

Evolution Type   Generational 
Initial Population   200 
Generations   200 – 800 
Generation Gap   25 % 
Mutation Probability   0.005 
Crossover Probability   0.93 
Size Factor   1000-10000 
Random Seed   123456789 
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3.1 HYPOTHESES FITNESS 

To ensure that the GA produces fit hypotheses we tested its performance with three synthetic 

datasets. All datasets had 3 attributes (A, B, C), that could take up to 26 distinct values (a…z) and 3 

problem classes (c1, c2, c3). For those experiments we set the number of generations to 800. 

The exact activation rules of the first synthetic dataset are presented below: 

(31.0%) c1 
�

 B=(f or g or j)  & C=(a or g or j) 

(28.0%) c2 
�

 C=(b or e) 

(41.0%) c3 
�

 B=(b or i) & C=(d or i) 

Attribute A is not used by any activation rule and, thus, its main influence is as noise. 

Although the target concept is not very complicated, the search space is huge. Figures 3 presents the 

results obtained using GATree with 100 random instances of the abovementioned concept. 

Mean fitness refers to the average fitness score of all genomes inside the current population. Fitness 

is the fitness score of the best individual. Accuracy is the obtained classification accuracy using the 

best genome and Size is the number of nodes of the best individual. 

The algorithm quickly (in less than 100 generations) finds a maximum fit hypothesis and then (for 

about 80 generations) makes minor adjustments adopting smaller trees that guarantee the obtained 

accuracy.  Figure 4 illustrates the final decision tree. 
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Figure 4. The obtained decision tree for the simple concept 
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More complex problems may not converge to maximum fit hypotheses. Often the misclassified 

instances would be those that create an exception to the underlying concept characteristics and thus, 

by not creating a rule to classify them, we produce a more fit hypothesis for test data (this can be 

viewed as a form of f lexible pruning). However, on noisy datasets, oversearching may produce 

overfitted trees. In such situations we could either use alternate size fitness functions (which 

somehow avoid the incorporation of noise) or post-process the derived trees with a pruning 

technique.   

Figure 5 presents the results for a more complex artificial dataset.  The dataset was created using 

eight rules (in contrast with the three rules of the first dataset). Furthermore, the rules had more 

complex structures, adopting more disjunctions per rule. For example, the first two activation-rules 

were as below: 

(15.0 %) c1 
�

 A=(a or b or t) & B=(a or h or q or x) 

(14.0%) c1 
�

 B=(f or l or s or w) & C=(c or e or f or k) 

Evidently GATree had a harder time to find a fit hypothesis. More search had to be done, inside 

bigger and more complex trees. An interesting part of the graph is the size peaks that appeared 

during searching. For example, between the 370th and 430th generation the size of the tree was 

overly expanded and then reduced. Such peaks identify an upper limit in the accuracy of the 

produced tree that needed a hypothesis jump in order for the evolution to continue. Such regions 

may also indicate problematic points for greedy heuristics, since they specify local maximums. 

Figure 6 presents the results for the most complex artificial concept we used. The dataset was 

created from twelve activation rules. The first two of them were as below: 

(13.0%) c1
�

A=(i or k) & C=(a or c or e or h) 

 (11.0%) c2
�

A=(d or e or h or o) & B=(d or g or h) & C=(j or k or m) 

It is clear from the presented graphs that there is a connection between the concepts’ complexity 

and the convergence rate. More specifically, more complex concepts converged slower than easier 

ones. Further experiments indicated that this trend stands for a wide range of concepts. 
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A diminishing returns effect is also evident on those graphs. GATree was quick to produce 

relatively fit hypotheses but subsequent generations showed a slowly attained progress. This also 

indicates that, even though GAs get very close to the global optimum it is very expensive to exactly 

reach it. Perhaps it would be wiser to use an alternate strategy to fine-tune the result. 

3.2  CONDITIONALLY DEPENDENT AND IRRELEVANT ATTRIBUTES 

Consider the example data set given in Table 2. 

Table 2: Example dataset 

A1 A2 A3 Class 
t f t t 
t f f t 
f t f t 
f t t t 
f f f f 
f f f f 
t t t f 
t t f f 

 
The class value is determined with XOR function on attributes A1 and A2, while the third attribute 

A3 is randomly generated. Although such a concept seams rather easy, the greedy heuristic of C4.5 

falsely estimates that the contribution of A3 is the highest among the three attributes. Moreover, 

C4.5 estimates that the contribution of the A1, A2 is very low. Therefore, C4.5 derives a decision 

tree with only one decision node (after pruning) that has the attribute A3 installed in it. Of course 

such a decision tree is unacceptable. 
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On the other hand, the less greedy strategy of GATree (which tries to minimize a tree’s size while at 

the same time maximize accuracy) easily discovers the desired decision tree (Figure 7) 

 

 

 

 

Even if we had prevented C4.5 from pruning the tree, it would create two replicated, identical to 

Figure 7, subtrees under the initial A3 node; a substantially bigger, less comprehensible tree. 

In order to further empirically evidence the previous mentioned deficiency of greedy heuristics, we 

created several artificial datasets with strong dependent and irrelevant attributes. The characteristics 

of those datasets are presented in the following table: 

Table 3: Artificial datasets characteristics 

Name Attributes Class Function Noise Instances Random 
Attributes 

Xor1 10 (A1 xor A2) or (A3 xor A4) No 100 6 
Xor2 10 (A1 xor A2) xor (A3 xor A4) No 100 6 
Xor3 10 (A1 xor A2) or (A3 and A4) or (A5 and A6) 10% class error 100 4 
Par1 10 Three attributes parity problem No 100 7 
Par2 10 Four attributes parity problem No 100 6 

 

For the experiments we used C4.5 as a typical representative of greedy induction. The mean 

accuracy results of standard 5-fold cross validation are presented in Table 4. 

 

 

 

 

 

Almost all experiments showed that greedy heuristics could not eff iciently deal with conditionally 

dependent attributes. GATree outperformed them in a more than significant level. However, one of 

the datasets (Xor3) showed that the presence of class noise can make GATree deviate from good 

predictors.  

Table 4: Classification accuracy 
 C4.5 GATree 

Xor1 67±12.04 100±0 

Xor2 53±18.57 90±17.32 

Xor3 79±6.52 78±8.37 

Par1 70±24,49 100±0 

Par2 63±6.71 85±7.91 

A1=t

A2=t

tf

A 2= f

ft
Figure 7. The obtained decision tree for the conditionally 

dependent attributes 



 15 

3.3 EXPERIMENTS WITH STANDARD DATASETS 

Experiments were conducted using several datasets from the UCI Repository (Blake et al., 2000). 

Every continuous attribute was discretized using WEKA’s unsupervised equal-frequency binning 

method. The number of bins was optimized using the entropy minimization criterion. We decided 

not to use a supervised (class based) discretization to artificially produce erroneous, complex search 

spaces with irrelevant as well as somewhat mutually dependent attributes3. Table 5 presents the 

classification accuracy results while Table 6 presents the derived decision trees size for GATree and 

C4.5 (with pruning). 
 

Table 5: Classification accuracy 

 C4.5 OneR GATree 

Colic 83.84±3.41 81.37±5.36 85.01±4.55 

Heart-Statlog 74.44±3.56 76.3±3.04 77.48±3.07 

Diabetes 66.27±3.71 63,27±2.59 63,97±3.71 

Credit 83.77±2.93 86.81±4.45 86.81±4 

Hepatitis 77.42±6.84 84.52±6.2 80.46±5.39 

Iris 92±2.98 94.67±3.8 93.8±4.02 

Labor 85.26±7.98 72.73±14.37 87.27±7.24 

Lymph 65.52±14.63 74.14±7.18 75.24±10.69 

Breast-Cancer 71.93±5.11 68.17±7.93 71.03±8.34 

Zoo 90±7.91 43.8±10.47 85.4±4.02 

Vote 96.09±3.86 95.63±4.33 95.63±4.33 

Glass 55.24±7.49 43.19±4.33 53.48±4.33 

Balance-Scale 78.24±4.4 59.68±4.4 71.15±6.47 

AVERAGES 78.46 72.64 78.98 

 

Table 6: Average tree sizes 

 C4.5 GATree 

Colic 27.4 5.84 

Heart-Statlog 39.4 8.28 

Diabetes 140.6 6.6 

Credit 57.8 3 

Hepatitis 19.8 5.56 

Iris 9.6 7.48 

Labor 8.6 8.72 

Lymph 28.2 7.96 

Breast-Cancer 35.4 6.68 

Zoo 17 10.12 

Vote 11 3 

Glass 60.2 8.98 

Balance-Scale 106.6 8.92 

AVERAGES 43.2 7.01 

 

GATree was able to produce the most accurate results (on average) even though the difference with 

C4.5 is not significant. However, it is most important that those results were accompanied by 

extremely small decision trees (C4.5 produced seven times bigger trees on average). Another 

significant point is that, even though there are datasets where the accuracy difference between C4.5 

and OneR was big (Labor, Lymph, Zoo, Balance-Scale, Labor) GATree managed to be close to (or 

better than) the most accurate scheme.  

                                                           
3 By choosing to use binary decision trees we implicitly use attribute-values pairs as attributes since every decision node 
has a specific attribute-value instead of an attribute installed in it 
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It is clear that under such noisy datasets OneR can exceed C4.5 in accuracy, in several datasets. 

However, in the general case it performs substantially worse. We attribute that behaviour to its 

procedural bias. OneR picks only one attribute and then branch on its values. However, this 

overlooks the fact that there can be several other informative attributes while, equally crucially, 

there can be branches based on irrelevant values. 

On the other hand, C4.5 produces good accurate results but with unnecessarily big trees. Pruning 

consistently under-prunes the resulted trees. However, the overly sized trees cannot be attributed 

only to the inadequacy of pruning to predict the optimal pruning level. When a decision tree 

induction method prunes away a subtree, it applies a statistical test that decides whether that subtree 

is justified by the data. But that decision has only been applied locally, in the pruned subtree. Its 

effect has not been allowed to percolate further up the tree, perhaps resulting in different choices 

being made on attributes to branch on. This is the dual process of greedy induction; pruning is 

another hill-climbing technique which can quickly guide to a good result, or on the other hand, can 

substantially deviate from the optimum. 

Contrary to greedy induction, GATree produces a dynamic, small-biased, accuracy/size based tree 

optimisation. This procedure is potentially superior than the (treated as uncorrelated) build-prune 

procedure of greedy heuristics. Nevertheless, GATree’s  “pruning capabilit ies” is just a side effect 

of its design. Possibly, there can be better ways to achieve its effect using more precise global 

metrics of tree quali ty.  

4 DISCUSSION 

GATree can be easily extended to make use of sets of independent decision tree classifiers. Recall 

that the building blocks that (mainly) comprise the final tree are created during the first step of the 

algorithm (where it produces a set of minimal random binary trees) and thus, those building blocks 

are different every time we use a different seed to initialize the random generator. Even when 

distinct populations of building blocks cannot substantially differ between them (when for instance 

there are not many attribute-values and/or classes), there is the payoff f unction that can be altered to 

prefer classifiers with different characteristics. Now, whenever an unknown instance has to be 

classified one can decide about its class by using a majority vote over every decision tree inside the 

classifier set. 
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Other scheduled improvements include the dynamic tuning of parameters. One can estimate the 

problem’s space-size and the convergence characteristics (by a bootstrap testing procedure).  We 

intend to investigate the effect of those two parameters on initial algorithm characteristics to obtain 

optimal results with less generations and smaller initial population.  

A basic drawback of GAs, compared with greedy heuristics, is speed. In order to evolve 200 

decision trees for 200 generations with 25% generation gap we have to create and test 10150 

decision trees. Although those trees are cheap to create and use, the time burden is substantially 

bigger than that of other heuristics (like information gain). Two potentially fruitful ideas are in the 

making for the near future regarding this issue.  

The first is based on the fact that the control problem (a major issue when the knowledge is 

represented with rules) is implicitly solved in decision trees. The crossover/mutation operators 

change the tree from a node downwards. Instead of classifying every instance using the changed 

tree (in order to assign it some score), we can classify only the instances that belong to the changed-

node’s subtree. That can result in substantial timesavings when the crossover is near the tree’s 

fringe. The extra burden is additional structures that keep track of every instance passing from some 

node, together with node statistics (how many instances pass from it, how many of them were 

correctly classified). Appendix A presents an estimation on the average percent of instances that 

may have to be re-classified using this technique compared to 100% of the original algorithm; it 

shows a more than significant decrease in the expected number of added classifications.  

This idea, however, reveals the true nature of the problem in applying genetic algorithms. As we 

move towards eff iciency, the underlying object of research shifts from the learning paradigm to the 

data (infra) structure. The researcher must carefully organize the search space so as to make full use 

of previously observed problems, by avoiding re-solving them (in our case, this means by suitably 

manipulating instance-sets to calculate rather than test accuracy). An optimistic reader could 

observe that this shift may well be a sign of the growing maturity of the field; the authors are more 

inclined to observe in this idea, however, the seeds of a quintessential topic in computer science: 

data caching. 

The second possible solution to the speed problem is a parallel implementation. There are several 

different approaches to parallelization. A coarse grain approach subdivides the population into 
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distinct groups of individuals called demes, and assigns each deme to a different computational 

node. Galib offers a deme based Genetic Algorithm in which populations are evolved in parallel 

(although in simulation mode). In contrast to coarse-grain, fine-grain implementations assign one 

processor per genome. Recombination takes place among neighboring individuals. Coarse-grain 

solutions are rather computationally complicated but they can produce significant timesavings.  

5 Conclusion 

In this work we have explored how GAs can be used to directly evolve decision trees. The whole 

approach is based on conceptual simplicity, adopting only necessary extensions to basic GAs and 

small a priori bias. The experiments have indicated that GAs have substantial advantages over other 

greedy induction heuristics especially when there are irrelevant or strongly dependent attributes. 

Furthermore, experiments demonstrated the implications of adopting greedy procedural biases. 

Surely, the proposed approach has several childhood flaws (e.g., results variance due to different 

initial conditions). Still, those flows can be remedied by further work and this paper suggests a 

number of research topics towards this direction. 
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Appendix A 

We can estimate the average number of instances that have to be re-classified in a crossovered 

and/or mutated tree as a function of tree levels and the original number of instances. This way we 

can reduce the computational cost of the objective function by recalculating it only for the changed 

fraction of the tree. 

This analysis is based on the assumption that instances are equally distributed between nodes. This 

means that if a father-node has k instances, then k/2 instances arrives at each one of its two children. 

Another assumption is that nodes are chosen for crossover or mutation with equal probability. 

Therefore, if we have a tree with size n then the probability of a node to be chosen is 1/n.  

Our average analysis deals with the two extremes of binary decision trees: the linear binary 

decision tree and the complete binary decision tree. Let l be the number of levels of a binary 

decision tree. Then, a linear binary tree has l+1 leaves and a total of 2l+1 nodes while a complete 
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binary decision tree has 2l leaves and a total of 2l+1-1 nodes. Any other binary decision tree with l 

levels lies somewhere between those two ends. 

Figure 8 presents the linear and complete binary decision trees of three levels together with the 

number of instances at each node (supposing that instances are equally distributed and that their 

total number is k). 

If the root node of the complete decision tree was chosen for crossover/mutation then all k instances 

should be re-classified. On the other hand, if a leaf was chosen then only k/8 instances should be re-

classified. Since every node has a probability              to be chosen it can be proven that the average 

number of instances that have to be used for the new hypotheses evaluation is: 

 

Or in a more compact form: 

 (Eq. 5) 

Using the same line of though, the average number of instances that have to be re-classified in a 

linear decision tree is: 

 

Or in a more compact form: 

 (Eq. 6) 

We know that the number of instances that have to be re-classified lies somewhere between those 

two extreme averages. Figure 9 shows the percent of the initial instances that has to be re-classified 

under both boundaries as a function of tree levels. For example, in a tree with eight levels we need 

to re-classify between 2% and 18% of the initial instances.  
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