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Abstract

We explore the use of genetic algorithms to directly evolve classification decision trees. Instead of
using binary strings, we adopt a natural representation of the problem using binary tree structures.
We argue on the suitability of such a concept learner due to its ability to efficiently search complex
hypotheses spaces and discover conditionally dependent as well as irrelevant attributes. The
performance of the system is measured on a set of artificial and standard discretized concept learning
problems and compared with the performance of two known agorithms (C4.5, OneR). We
demonstrate that the derived hypotheses of standard algorithms can substantialy deviate from the
optimum. This deviation is partly due to their non-universal procedural bias which can be reduced
using global metrics of tree quality like the one proposed.

1 INTRODUCTION

Genetic Algorithms (GAS) have been widely used as an effective search technique, especially when

the search space contains complex interacting parts. Rather than search from general-to-specific or

from simple-to-complex hypotheses, GAs generate successor hypotheses by repeatedly mutating

and recombining parts of the best currently known hypotheses.

On the other hand, decision tree induction is a very popular and practical method for pattern
classification. It has been successfully applied to a broad range of tasks from learning to diagnose
medical casesto learning to assess credit risk of loan applicants.

The construction of optimal decision trees has been proven to be NP-complete, under several
aspects of optimality and even for simple concepts (Murthy, 1998). This led to the development of
severa heuristic search strategies that aimed to tackle the combinatorial explosion during the search
for good hypotheses. Current inductive learning agorithms use variants of impurity functions like
information gain, gain ratio (Quinlan, 1986), gini-index (Breiman et al., 1984), distance measure
(de Mantaras, 1989), j-measure (Smyth & Goldman, 1990) to guide the search. Fayyad (1991)

discusses severa deficiencies of impurity measures. He pointed out that impurity measures are



insensitive to inter-class separation and intra-class fragmentation, as well as insensitive to
permutations of the class probability distribution (the information paradox (Smith & Goodman,
1991)). Other authors (Kononenko et al.,1997) (Ragavan & Rendell, 1993) indicated that those
measures assume that attributes are conditionally independent and therefore they have poor chances
of revealing a good hypothesis in domains with strong conditional dependencies between attributes.
Furthermore, several authors have provided evidence that the presence of irrelevant attributes can
mislead the impurity functions towards producing bigger, less comprehensible, more error-prone

classifiers.

This work is an attempt to overcome the use of greedy heuristics and search the decision tree space
in a more natural way. More specifically, we make use of genetic algorithms to directly evolve
binary decision trees in the conquest for the one that most closely matches the target concept. On
doing so we adopt a natural representation of the search space using actual decision trees and not
binary strings. We couple our objective with a simplification motivation. We use GAs to evolve

accurate as well as simple decision trees.

Although GAs have been used in a great degree for classification and concept learning tasks
(Wilson, 1986) (Goldberg, 1989) (Booker et al., 1990) (De Jong et a, 1993) (Janikow, 1993)
(Congdon, 1995), there is little work on their utility as a tool to evolve decision trees. The closest
relative of this work comes from Koza (1991) who points out the suitability of the tree genome for
decision tree building (though he did not proceed on details about the advantages/ disadvantages of

such a concept learner).

Most often GAs are related with Decision Trees (or other pattern classification agorithms) as a
preprocessor for the problem of feature selection. That is, from alarge number of features select the
most suitable ones to be used by the concept classification algorithm. Punch et al. (1993), Turney
(1995), Vafaie & DeJong (1992), Bala et al. (1995) provided more details on this subject.

Since Schaffer (1993) introduced the concept of different levels of suitability for learner biases, the
idea that there is no universally better algorithm is fast maturing on the machine learning
community. Informally, Schaffer stated that no agorithm biases are suitable for every target

concept; some concepts might be better represented with extremely small trees or they may have a



complex seach space optimally represented only after some form of exhaustive search. We might

do better to map different algorithms to dfferent groups of problemswith practical importance

Although there ae several types of biases, here we distinguish between preference and procedural
bias. A preference bias is based on the learner’s behavior while a procedura bias is based on the
leaner’s design. For example, C4.5 is biased towards accurate, small trees (preference bias) and
uses the gain-ratio metric and minimum-error pruning (different procedural biases). A preference
bias is most often desirable since it determines the dharacteristics of the produced tree On the other
hand, an inadequate procedural bias may severely affed the quality of the output. The proposed
search imposes a new weak procedura bias, one that allows the @mncept learner to consider a
relative large number of hypotheses, in a relative efficient manner. The proposed weegk bias
employs global metrics of tree quality. We thus sift from “how” to induce a tree (standard,
impurity-based induction) to “what criteria an induced tree must satisfy”. We view setting a policy
direction, as opposed to how a policy should be implemented, as a de fado deaease in bias with

significant advantages over other highly used procedural biasesin complex search spaces.

There is an adive debate on the machine learning community on whether lessgreedy heuristics can
improve the quality of the produced trees. Garey and Graham (1974) showed that greedy algorithms
using information theoretic splitting criteria can be made to perform arbitrarily worse than the
optimal. Norton (1989) showed that exhaustive lookahead applied to ID3 reduced tree sizes on
average and produced small gainsin accuracy, but could be expensive. Ragavan and Rendell (1993)
showed that their LFC algorithm that performed bah lookaheal and constructive induction can
perform well on tasks involving feature interaction. On the other hand, Murthy and Salzberg (1995)
found that one-level lookahead yield larger, less accurate trees on many tasks (they named this
situation decision tree pathology). Quinlan and Cameron-Jones (1995) reported similar findings and
hypothesized that lookahead can yield “fluke theories’ that fit the training data but have poor

predictive acuracy.

Genetic dgorithms are neither hill-climbing systems nor do they conduct an exhaustive search of
the space of all possible hypotheses. Rather, they are a type of beam search. The population is the

beam — the colledion of points in the seach space from which further search may be conducted.



This sems promising regarding their ability to aggregate desired charaderistics of both hill -

climbing and exhaustive search algorithms.

The rest of this paper is organized in three sedions. In the next sedion we elaborate on the
construction of the proposed system (GATree) and the modifications to the standard mutation-
crosover operators. We then demonstrate via an experimental sesson that the proposed seach
procedure indead works and point out some of its benefits. Finally, we put al the details together
identifying good points or possble pitfalls and dscussng lines of research that have been deemed

worthy of following.

2 THE GATreeSYSTEM

To apply GAs to aparticular problem, we need to select an internal representation o the space to be
searched combined with an external evaluation function, which asdgns scores to candidate
solutions. Both components are aitical to the succesdul application d GAs to the problem of
interest.

2.1 REPRESENTATION ISSUES

Traditionally, GAs use binary strings to represent points in seach space However, such
representations do not appear well suited for representing the space of concept descriptions that are

generaly symbolic in nature and with varying length and complexity.

There ae two different approadhes one might take to resolve this issue. The first involves changing
the fundamental GA operators  as to work well with the complex non-string objects, while the
second attempts to construct string representations of solutions that minimize ay changes to the
basic GA phil osophy.

We stuck with the first approach for three fundamental reasons. Firgt, it is natural to use atree
structure to represent dedsion trees and the mutation-crosover operators can be efficiently altered
to match this dructure. Seand, it is not trivia to alter the basic mutation-crossover operators  as
to be used with string representatives of dedsion trees and at the same time preserve trees
structures. Findly, libraries of GA’s components emerge today that give the option d aternative
internal representations and can substantially decrease the overheal of deriving the needed tuning

of GA’s operators.



For this work we have used GALIB (Wall, 1996), a robust C++ library of Genetic Algorithm
Components. GALIB offers a wide range of interna representations (including a tree

representation) combined with easily adjusted parameters $ asto gptimally tune its behavior.

2.2 DATA PREPROCESSING AND GENETIC OPERATORS

We use GALIB’ s tree representation to build a population of minimal binary decision trees. That is,
we build decision trees that have one dedsion node that leads to two different leaves. Every
decision node has a random chosen value as its installed test. This is done in two steps. First we
choose arandom attribute. Then, if that attribute is nomina we randomly choose one of its possible
values; if it is continuous we randomly pick an integer value belonging to its min-max range. This
approach reduces the size of the seach space and it is draightforward. Still, it has problems with
red-valued attributes; for this work we cncentrated on nominal attributes. Leaves are populated

using the same line of thought; we just pick arandom classfrom the ones available.

The basic form of the proposed agorithm introduces minimum changes to the mutation-crosover
operators. Mutation chooses a random node of a desired treeand it replaces that node' s test-value
with a new random chosen value. When the random node is a ledf, it replaces the installed class

with anew random chosen class(Figure 1).

The aossover operator chooses two random nodes and swaps those nodes sub-trees. Since
predicted values rest only on leaves, the adossover operator does not affect the decision tree's

coherence (Figure 2).

Chosen Node

Chosen Node .

New Class
Figure 1. Mutation Examples

Figure 2. Crosover Examples



2.3 PAYOFF FUNCTION

Having a population of candidate solutions we need a payoff function (or objective function) to
assign utility to each one of them. A natural way to assign utility to a random decision tree is by
using it to classify the known instance-set. Then we grant a scaled payoff to the best candidates.
Furthermore, we chose to grant higher payoffs to smaller trees (assuming that they perform almost
equally with bigger ones). This is a way to avoid unnecessary test-values replications aong a
specific path (that can happen since we do not exclude any already used attribute-value from being
used again) while a the same time we derive comprehensible decision trees. Thus, the fitness

function is balanced between accuracy and size:

payoff (treei) = CorrectCIassifiedi2 *

size,” +x (Ea.1)
The second part of the product (the size factor) includes a factor x which has to be set to an arbitrary
big number. Thus, when the size of the tree is small the size factor is near one, while it decreases

when the tree grows big. Thisway, the payoff is greater for smaller trees.

The size factor can be altered to match individual needs. For example, if we had set x to 1,000,000
then the GA would search inside a bigger search space (more trees). However, bigger search spaces
inevitably mean less optimized trees for a fixed number of generations. Alternative size factors can
be used that would prefer trees with sizes inside some range (assuming that we know that the target
concept can be represented with a decision tree of a specific size). This could lead to more efficient

search and thus less time for the GA to converge.

2.4 ADVANCED SYSTEM CHARACTERISTICS

To reduce the overcrowding problem (Goldberg, 1989) we used a scaled payoff function, which
aimed at reducing the similarity of decision trees on the population. When there were many decision

trees with similar characteristics' we reduced their payoff function.

Furthermore, we implemented several aternative crossover and mutation functions. An interesting
aternative crossover used a bias evolution towards more fit subtrees. We implemented a data

structure that kept for every node the correct/incorrect classified instances passing from it. That

! To estimate the similarity of different decision trees we used a simple, computationally cheap formula based only on
the differences between the number of nodes and tree levels.



information was used to alter the probability with which a node was chosen for mutation or

crossover. More accurate subtrees had |ess chance to be used for crossover or mutation.

To speed up evolution we aso implemented an atered version of Limited Error Fitness (LEF)
(Gathercole & Ross, 1997). This technique introduces an error limit. If the number of errors of an
individual, during the process of evolution, is higher than the error limit, al remaining cases are
treated as errors. This means that poor individuals will not be evaluated on the entire training set,
saving CPU time. With moderate usage of the error limit we were able to produce significant CPU

time savings and insignificant accuracy loses.

To test the effectiveness of all those components we further implemented a second layer genetic
algorithm. The genomes of this algorithm included coded information about the mutation/crossover
rates and different heuristics as well as a number of other optimizing parameters. The second layer
was tested using several datasets to ensure result robustness. Some of the most recurring results
were a mutation rate of 0.005, a crossover rate of 0.93, the need to use a crowding avoidance
technique and the fact that aternative mutations/crossovers did not produce significant

improvements compared to the basic mutation/crossover operators.

2.5 SEARCH SPACE AND INDUCTION COSTS

We have set the basic requirements for our genetic algorithm: an appropriate representation for
possible solutions combined with suitable mutation-crossover operators and a payoff function. Here
we will come-up with a mathematical formula for the size of search space. This is useful since we

would like to achieve a good hypothesis ensuring that we have not exhaustively searched the space.

The size of search space depends on tree size. Let D(n) be the number of topologically different
binary decision trees of n leaves. Then, it has been proven by Fayyad (1991) that:
o -2
<n>—% "0 no (Eq.2)

The search space depends aso on the amount of different attribute-values and classes of the
underlying concept. Suppose that « is the sum of the distinct values’ of all features and that c is the

distinct problem classes. Since we use binary decision trees the number of internal nodesisn-1. An



internal node can use ay one of the « distinct values and that holds for every node. Sincewe dlow
values to be reused, a binary dedsion treeof n leaves has ™ syntacticaly different trees regarding
the dtribute values. This has to be multiplied with the ¢" syntadically different decision trees
regarding the problem classes. Therefore, the total number of syntadicdly different binary decision

treesof nleavesis:
T(n,a,c)=D(n)*a"**c" (Eq.3)

When we seach for a spedfic tree we do not stick to trees with specific number of leaves; instead
we search on a space cntaining a wide range of tree sizes. Asauming that the number of training
instances is k, the maximum number of leavesis aso k (one instance d every leaf). Thus, the size of
the search spaceis:

S(k.a,c) = iT(n,a,c) (Eq.4)
n=1

A serial seach for the best treeis prohibitive even under very restrictive situations. Suppose that we
set k to a small number (e.g., 10) and that we have arather simple ancept to learn (2 attributes with
3 different values for each and 2 problem classes). We further reduce the space size by considering
only the possible dedsion trees for n=10 (even though we should consider all the trees for
nC[1,10]). This gives, T(10,6,2) = 4862:6>2'° = 50,173,704,142,848. Any seach algorithm has to

do better then successvely test every possible tree.

It can be proven (Quinlan, 1986) that feature selection at a node of greedily induced trees, has
complexity O(ak) for a features and k instances. In contrast, one-level |ookahead's complexity is
O(a%k?) (Murthy and Salzberg, 1995), or more generally O(a’k®) for d-1 levels of lookahead. Those
fadors are the dominant ones during decision tree induction since subsequent future selection are
based on a partitioned dataset and the number of nodes cannot be greaer than the number of

instances.

The st of the proposed heuristic is based on four different factors: the number of generations
(gen), the number of genomes that are evaluated in the population (pop), the number of instances (k)

and the average path an instance has to follow from the root to aleaf (avPath). Then the cost of the

2 We assume only nominal attributes. For continuous ones the search spaceis enormously bigger sincethe possible test
valuesinside amin-max range are infinite.



algorithm is: gen - pop- k - avPath. Quite safely, the pop parameter can be set to a constant
multiplier of the number of dataset feaures a ( pop = ¢;a ) with ¢; << a. Furthermore, under avery
pessmistic higher boundary we can set avPath to k. With those assumption, the cmplexity of the
agorithm is O(gen- k%a). Appendix A presents an extension over the basic dgorithm that caches
previous classifications and can lower the basic complexity to O(gen-k-a) especialy when the
derived trees become large. One cannot predsely express the generations needed for convergence
since they depend onthe complexity of the underlying concept. However, since the GA evolves
complete solutions, the dgorithm can be terminated whenever necessary. One should also not forget
that GAs are highly parale procedures, and thus, even lower absolute time requirements are
possble using a parallel evolution. Ancther advantage of this procedure is that the output is not just

adecisiontreebut a olledion of dedsion trees that can be used aternatively.

3 EXPERIMENTS

Our first aim was to examine the rate with which GATree produces fit hypotheses for target
concepts. Those concepts were chosen to be of varying complexity. To ensure complexity variety
we used several artificial datasets that were constructed using DataGen; a program that uses random
rules to generate artificial instance-sets (Mélli, 1999). The goal was then to use those sets to

reconstruct the underlying knowledge.

For the aossvalidation experiments we used WEKA; alibrary of Madine Leaning Algorithmsin
Java (Witten & Frank, 2000). More spedficdly, we made use of WEKA'’s implementations for two
known clasdfiers; the C4.5 implementation (Quinlan, 1993) with binary decision trees and the
OneR implementation (Holte, 1993). The parameters for those dassifiers were dosen to be the
default ones used by WEKA (Version 31.6).

Crossvalidation was first performed on a number of artificial datasets explicitly designed to
demonstrate some of GATree's benefits over greedy heuristics. Then, we mmpared its performance
against C4.5 and OneR over severa discretized datasets. C4.5 and OneR have different
representational bias: C4.5 is biased towards accuracy (and secondarily size) while OneR is biased
towards extremely simple dassficaion rules (and secondarily accuracy). We demonstrate that
their derived hypotheses can unnecessarily deviate from the dual goal (under straightforward

asumptions). Furthermore, we ague that this deviation is partly because of their inappropriate



procedura bias and thus, can be reduced using global metrics of tree quality. For al comparisons,
we aopted a standard 5-fold crossvalidation.

A problem with GAs is the diversity of the obtained results due to factors like the initial random
seed, the initial population and number of generations. The diversity may be surprisingly high for
complex search spaces given that we have limited resources (limited number of genomes and
generations). Instead of using a big number of generations and an equally big number of genomes,
we alopted an alternative strategy that uses relatively few generations and a small number of
genomes but repeds the learner several times. For every output of the dossvalidation experiments
we repeded the dgorithm 10 times and then picked the highest fit genome (based on training set).

The dgorithm’s parameters during the experiments are presented in Table 1. We have chosen to use
overlapping populations; every generation replaces 25% of the worst individuals of the previous
one. The initial population was st to 200 even though it can vary depending on the cmplexity of
the target concept. The number of generations was fixed to 200 for al crossvalidation experiments.
The mutation and crosover rates were set to 0.005 and 0.93 accordingly, based on the second layer
feedback. In order to allow reproducibility we initialized the random generator using the value
123456789.

The factor x was st to 1000 for the experiments with standard datasets. A small fador x means a
bias towards small trees. However this bias is flexible sincethe dgorithm may deviate from it (only
as much is needed) to produce an acaptable hypothesis. For all other experiments we set the factor

x to 10000 (emphasis on accuracy).

Table 1. Experiments Parameters

Evolution Type Generational
Initial Popuation 200
Generations 200 —-800
Generation Gap 25%

Mutation Probability 0.005
Crossover Probability | 0.93
SizeFador 1000-10000
Randam Sedl 123456789

1C



31 HYPOTHESESFITNESS

To ensure that the GA produces fit hypotheses we tested its performance with three synthetic
datasets. All datasets had 3 attributes (A, B, C), that could take up to 26 distinct values (a...z) and 3

problem classes (c1, c2, c3). For those experiments we set the number of generations to 800.

The exad adivation rules of the first synthetic dataset are presented below:

(310%) cl €« B=(forgorj) & C=(aorgorj)

(28.0%) c2 €« C=(b or €)

(41.0%) c3 < B=(bori) & C=(dori)

Attribute A is not used by any activation rule and, thus, its main influenceis as noise.

Although the target concept is not very complicated, the search space is huge. Figures 3 presents the

results obtained using GATree with 100 random instances of the abovementioned concept.

Mean fitness refers to the average fitness score of al genomes inside the current population. Fitness
IS the fitness score of the best individual. Accuracy is the obtained classification accuracy using the

best genome and Szeis the number of nodes of the best individual.

The algorithm quickly (in less than 100 generations) finds a maximum fit hypothesis and then (for
about 80 generations) makes minor adjustments adopting smaller trees that guarantee the obtained

accuracy. Figure4 illustrates the final decision tree.
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More complex problems may not converge to maximum fit hypotheses. Often the misclassfied
instances would be those that create an exception to the underlying concept characteristics and thus,
by not creating a rule to classify them, we produce amore fit hypothesis for test data (this can be
viewed as a form of flexible pruning). However, on ndsy datasets, overseaching may produce
overfitted trees. In such situations we could either use dternate size fitness functions (which
somehow avoid the incorporation d noise) or post-process the derived trees with a pruning

technique.

Figure 5 presents the results for a more complex artificia dataset. The dataset was creaed using
eight rules (in contrast with the three rules of the first dataset). Furthermore, the rules had more
complex structures, adopting more digunctions per rule. For example, the first two activation-rules
were & below:

(15.0%) c1 €« A=(aorbort) & B=(aor hor qor x)

(14.0%) c1 < B=(f or | or sor w) & C=(cor eor f or k)

Evidently GATree had a harder time to find a fit hypothesis. More seach had to be done, inside
bigger and more complex trees. An interesting part of the graph is the size peaks that appeaed
during seaching. For example, between the 370th and 430th generation the size of the tree was
overly expanded and then reduced. Such pe&ks identify an upper limit in the accuracy of the
produced tree that neaded a hypothesis jump in order for the evolution to continue. Such regions

may also indicate problematic points for gready heuristics, since they specify locad maximums.
Figure 6 presents the results for the most complex artificial concept we used. The dataset was
created from twelve activationrules. Thefirst two of them were & below:

(13.0%) c1<A=(i or k) & C=(aor cor eor h)

(11.0%) c2€<A=(d or eor hor 0) & B=(d or gor h) & C=(j or k or m)

It is clea from the presented graphs that there is a wnnection between the concepts complexity
and the convergence rate. More spedfically, more mmplex concepts converged slower than easier

ones. Further experiments indicated that this trend stands for a wide range of concepts.
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A diminishing returns effect is also evident on those graphs. GATree was quick to produce
relatively fit hypotheses but subsequent generations showed a slowly attained progress. This aso
indicates that, even though GAs get very close to the global optimum it is very expensive to exactly

reach it. Perhaps it would be wiser to use an alternate strategy to fine-tune the result.
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Figure 5. Results for the complex concept Figure 6. The most complex artificial concept

3.2 CONDITIONALLY DEPENDENT AND IRRELEVANT ATTRIBUTES

Consider the example data set given in Table 2.

Table 2; Example dataset

Al |A2 |A3 |d ass
t t

—h| | =] =] | =n[ =] —~
—h| —h| =h| =h| | |~

| =+ | =h| —=h| =h[ =n| ~+
| =+ | =h| =h| | [ =n]| =

The class value is determined with XOR function on attributes A1 and A2, while the third attribute
A3 israndomly generated. Although such a concept seams rather easy, the greedy heuristic of C4.5
falsely estimates that the contribution of A3 is the highest among the three attributes. Moreover,
CA4.5 estimates that the contribution of the Al, A2 is very low. Therefore, C4.5 derives a decision
tree with only one decision node (after pruning) that has the attribute A3 installed in it. Of course

such adecision treeis unacceptable.
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On the other hand, the lessgreedy strategy of GATree(which triesto minimize atre€s szewhile &

the same time maximize accuracy) easily discovers the desired dedsion tree (Figure 7)

A2=t A 2=t

Figure 7. The obtained decision treefor the conditionally
dependent attributes

Even if we had prevented C4.5 from pruning the tree, it would create two replicated, identical to
Figure 7, subtrees under the initial A3 node; a substantially bigger, lesscomprehensible tree.

In order to further empirically evidence the previous mentioned deficiency of greedy heuristics, we
created severa artificia datasets with strong dependent and irrelevant attributes. The dharacteristics
of those datasets are presented in the following table:

Table 3: Artificial datasets characteristics

Name | Attributes Class Function Noise Instances Rar_1dom
Attributes
Xorl 10 (A1 xor A2) or (A3 xor A4) No 100 6
Xor2 10 (A1 xor A2) xor (A3 xor A4) No 100 6
Xor3 10 (A1 xor A2) or (A3 and A4) or (A5 and A6) | 10% class error 100 4
Parl 10 Three attributes parity problem No 100 7
Par2 10 Four attributes parity problem No 100 6

For the experiments we used C4.5 as a typica representative of greedy induction. The mean

accuracy results of standard 5-fold crossvalidation are presented in Table 4.

Table 4: Classification accuracy

C4.5 GATree
Xorl 67+12.04 100+0
Xor2 53+18.57 90+17.32
Xor3 79+6.52 78+8.37
Parl 70+24,49 100+0
Par2 63+6.71 85+7.91

Almogt al experiments showed that greedy heuristics could not efficiently ded with conditionally
dependent attributes. GATree outperformed them in a more than significant level. However, one of
the datasets (Xor3) showed that the presence of classnoise @an make GATree deviate from good
predictors.
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3.3 EXPERIMENTSWITH STANDARD DATASETS

Experiments were conducted using severa datasets from the UCI Repository (Blake et al., 2000).
Every continuous attribute was discretized using WEKA'’s unsupervised equal-frequency binning
method. The number of bins was optimized using the entropy minimization criterion. We decided
not to use asupervised (classbased) discretization to artificially produce eroneous, complex search
spaces with irrelevant as well as ®mewhat mutually dependent attributes®. Table 5 presents the
clasgsfication acaracy results while Table 6 presents the derived dedsion trees sze for GATree and
C4.5 (with pruning).

Table 5: Classification accuracy Table 6: Average tree sizes

C4.5 OneR GATree C4.5 GATree
Colic 83.84+3.41] 81.37+5.36| 85.01+4.55 |Colic 274 5.84
Heart-Statlog 74.44+3.56| 76.3+3.04] 77.48+3.07| [Heart-Statlog 39.4 8.28
Diabetes 66.27+3.71] 63,27+2.59| 63,97+3.71| |Diabetes 140.6 6.6
Credit 83.77+2.93| 86.81+4.45 86.81+4| [Credit 57.8 3
Hepatitis 77.42+6.84) 84.5246.2] 80.46+5.39| |Hepatitis 19.8 5.56
Iris 92+2.98] 94.67+3.8] 93.844.02| [lris 9.6 7.48
Labor 85.26+7.98| 72.73+14.37| 87.27+7.24| |Labor 8.6 8.72
Lymph 65.52+14.63| 74.14+7.18| 75.24+10.69| |Lymph 28.2 7.96
Breast-Cancer | 71.93#5.11| 68.17+7.93| 71.03+8.34| |Breast-Cancer 35.4 6.68
Zoo 90+7.91| 43.8+10.47| 85.4%4.02| |Zoo 17 10.12
Vote 06.09+3.86] 95.63+4.33] 95.63+4.33| [Vote 11 3
Glass 55.24+7.49 43.19+4.33| 53.48+4.33 |Glass 60.2 8.98
Balance-Scale 78.24+4.4|  59.68+4.4 71.15+6.47| |Balance-Scale 106.6 8.92
AVERAGES 78.46 72.64 78.98) |AVERAGES 43.2 7.01

GATreewas able to produce the most accurate results (on average) even though the diff erence with
C4.5 is not significant. However, it is most important that those results were accompanied by
extremely small dedsion trees (C4.5 produced seven times bigger trees on average). Another
significant point is that, even though there ae datasets where the acairacy diff erence between C4.5
and OneR was big (Labor, Lymph, Zoo, Balance-Scde, Labor) GATree managed to be dose to (or

better than) the most accurate scheme.

% By choasing to use binary dedsion trees weimplicitly use atribute-values pairs as attributes snce every dedsion node
has a spedfic dtribute-valueinstead of an attribute installed in it



It is clea that under such nasy datasets OneR can exceed C4.5 in accuracy, in several datasets.
However, in the general case it performs substantialy worse. We atribute that behaviour to its
procedural bias. OneR picks only one atribute and then branch on its values. However, this
overlooks the faa that there can be several other informative attributes while, equally crucially,

there an be branches based on irrelevant values.

On the other hand, C4.5 produces good accurate results but with unnecessarily big trees. Pruning
consistently under-prunes the resulted trees. However, the overly sized trees cannot be dtributed
only to the inadequacy of pruning to predict the optimal pruning level. When a decision tree
induction method prunes away a subtree, it applies a statisticd test that decides whether that subtree
is justified by the data. But that dedsion has only been applied locdly, in the pruned subtree. Its
effect has not been allowed to percolate further up the treg perhaps resulting in different choices
being made on attributes to branch on. This is the dua process of greedy induction; pruning is
another hill-climbing tedhnique which can quickly guide to a good result, or on the other hand, can

substantially deviate from the optimum.

Contrary to greedy induction, GATree produces a dynamic, small-biased, accuracy/size based tree
optimisation. This procedure is potentialy superior than the (treded as uncorrelated) buil d-prune
procedure of greedy heuristics. Nevertheless GATree's “pruning capabilities’ is just a side effect
of its design. Posshly, there an be better ways to achieve its effect using more precise global

metrics of treequality.

4 DISCUSSION

GATree @n be easily extended to make use of sets of independent dedsion tree dasdfiers. Recdl
that the buil ding blocks that (mainly) comprise the fina treeare created during the first step of the
algorithm (where it produces a set of minimal random binary trees) and thus, those buil ding blocks
are different every time we use adifferent seal to initialize the random generator. Even when
distinct populations of building blocks cannot substantially differ between them (when for instance
there ae not many attribute-values and/or classes), there is the payoff function that can be dtered to
prefer classifiers with different charaderistics. Now, whenever an unknown instance has to be
classfied one @n deade aout its classby using a majority vote over every dedsion tree inside the

classfier set.
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Other scheduled improvements include the dynamic tuning of parameters. One can estimate the
problem’s ace-size and the convergence charaderistics (by a bootstrap testing procedure). We
intend to investigate the dfect of those two parameters on initial algorithm charaderistics to obtain

optimal results with lessgenerations and smaller initial population.

A basic drawbadk of GAs, compared with greedy heuristics, is eed. In order to evolve 200
decision trees for 200 generations with 25% generation gap we have to create and test 10150
decision trees. Although those trees are cheap to credae and use, the time burden is substantialy
bigger than that of other heuristics (like information gain). Two potentially fruitful ideas are in the

making for the nea future regarding thisisaue.

The first is based on the fact that the control problem (a maor issue when the knowledge is
represented with rules) is implicitly solved in dedsion trees. The crosver/mutation operators
change the tree from a node downwards. Instead of clasgfying every instance using the changed
tree(in order to assgn it some score), we can classfy only the instances that belong to the changed-
node’s subtree. That can result in substantial timesavings when the aossover is near the tree's
fringe. The extra burden is additional structures that keep tradk of every instance passng from some
node, together with node statistics (how many instances pass from it, how many of them were
corredly classified). Appendix A presents an estimation on the average percent of instances that
may have to be re-clasdfied using this tedniqgue mmpared to 100% of the origina agorithm; it

shows a more than significant deaease in the expected number of added classficdions.

This idea, however, reveds the true nature of the problem in applying genetic algorithms. As we
move towards efficiency, the underlying objed of research shifts from the leaning paradigm to the
data (infra) structure. The researcher must carefully organize the search spaceso as to make full use
of previously observed problems, by avoiding re-solving them (in our case, this means by suitably
manipulating instance-sets to cdculate rather than test accuracy). An optimistic reader could
observe that this dhift may well be asign o the growing maturity of the field; the authors are more
inclined to observe in this ideg however, the seeds of a quintessential topic in computer science:

data @ading.

The second posshble solution to the speed problem is a parallel implementation. There are several

different approaches to paralelization. A coarse grain approach subdivides the population into



distinct groups of individuals called demes, and assigns each deme to a different computational
node. Galib offers a deme based Genetic Algorithm in which populations are evolved in parallel
(although in simulation mode). In contrast to coarse-grain, fine-grain implementations assign one
processor per genome. Recombination takes place among neighboring individuals. Coarse-grain

solutions are rather computationally complicated but they can produce significant timesavings.

5 Conclusion

In this work we have explored how GAs can be used to directly evolve decision trees. The whole
approach is based on conceptual simplicity, adopting only necessary extensions to basic GAs and
small a priori bias. The experiments have indicated that GAs have substantial advantages over other
greedy induction heuristics especially when there are irrelevant or strongly dependent attributes.
Furthermore, experiments demonstrated the implications of adopting greedy procedural biases.
Surely, the proposed approach has severa childhood flaws (e.g., results variance due to different
initial conditions). Still, those flows can be remedied by further work and this paper suggests a

number of research topics towards this direction.
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We can estimate the average number of instances that have to be re-classified in a crossovered
and/or mutated tree as a function of tree levels and the original number of instances. This way we
can reduce the computational cost of the objective function by recalculating it only for the changed

fraction of the tree.

This analysis is based on the assumption that instances are equally distributed between nodes. This
means that if afather-node has k instances, then k/2 instances arrives at each one of its two children.
Another assumption is that nodes are chosen for crossover or mutation with equal probability.

Therefore, if we have atree with size n then the probability of a node to be chosen is 1/n.

Our average analysis deals with the two extremes of binary decision trees: the linear binary
decision tree and the complete binary decision tree. Let | be the number of levels of a binary

decision tree. Then, alinear binary tree has |1+1 leaves and a total of 2|+1 nodes while a complete
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binary decision tree has 2' leaves and a tota of 2'*-1 nodes. Any other binary decision tree with |

levels lies somewhere between those two ends.

Figure 8 presents the linear and complete binary decision trees of three levels together with the
number of instances at each node (supposing that instances are equally distributed and that their

total number isk).

If the root node of the complete decision tree was chosen for crossover/mutation then al k instances

should be re-classified. On the other hand, if aleaf was chosen then only k/8 instances should be re-
1

classified. Since every node has a probability 2= -7 to be chosen it can be proven that the average

number of instances that have to be used for the new hypotheses evaluation is:

1 2 kK 4 Kk 2"k
k + —+ —
2|+1_l 2|+l_12 2|+l_l4 2|+1_12|
Or in amore compact form:
C(k.l) :kz(l'jl)1 (Eq. 5)

Using the same line of though, the average number of instances that have to be re-classified in a

linear decison treeis:
1 2 k 2 k 2 k
k + +

—+ -ttt
2041 21+12 21+14 2l +12'

Or in amore compact form:

L(k,1) = 2%1(“ 3 2“%-1) (Eg. 6)

We know that the number of instances that have to be re-classified lies somewhere between those
two extreme averages. Figure 9 shows the percent of the initial instances that has to be re-classified
under both boundaries as a function of tree levels. For example, in atree with eight levels we need

to re-classify between 2% and 18% of the initia instances.

0,700
—e—Complete Binary

0,600 Decision Tree .

® ®
@ @ —® @
(@ @ @ @ @
@ @ @ OO O GO (@

Figure 8. Linear and Complete binary decision trees of 3 1 5 9 13 17 21 25 29 33 37 41 45 49
levels Tree levels

0,500 —m=—Linear Binary —

Decision Tree

0,400 q \&

0,300 +

classified

0,200 -

0,100 -

Percent Of Instances that must be re-

Figure 9. Average needed re-classification
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