
 1

GATree: Genetically Evolved Decision Trees

Athanasios Papagelis PAPAGEL@CTI.GR
Dimitris Kalles KALLES@CTI.GR
Computer Technology Institute, PO Box 1122, 261 10, Patras, Greece.

Abstract

We explore the use of genetic algorithms to directly evolve classification decision trees. Instead of
using binary strings, we adopt a natural representation of the problem using binary tree structures.
We argue on the suitability of such a concept learner due to its ability to efficiently search complex
hypotheses spaces and discover conditionally dependent as well as irrelevant attributes. The
performance of the system is measured on a set of artificial and standard discretized concept learning
problems and compared with the performance of two known algorithms (C4.5, OneR). We
demonstrate that the derived hypotheses of standard algorithms can substantially deviate from the
optimum. This deviation is partly due to their non-universal procedural bias which can be reduced
using global metrics of tree quality like the one proposed.

1 INTRODUCTION

Genetic Algorithms (GAs) have been widely used as an effective search technique, especially when

the search space contains complex interacting parts. Rather than search from general-to-specific or

from simple-to-complex hypotheses, GAs generate successor hypotheses by repeatedly mutating

and recombining parts of the best currently known hypotheses.

On the other hand, decision tree induction is a very popular and practical method for pattern

classification. It has been successfully applied to a broad range of tasks from learning to diagnose

medical cases to learning to assess credit risk of loan applicants.

The construction of optimal decision trees has been proven to be NP-complete, under several

aspects of optimality and even for simple concepts (Murthy, 1998). This led to the development of

several heuristic search strategies that aimed to tackle the combinatorial explosion during the search

for good hypotheses. Current inductive learning algorithms use variants of impurity functions like

information gain, gain ratio (Quinlan, 1986), gini-index (Breiman et al., 1984), distance measure

(de Mantaras, 1989), j-measure (Smyth & Goldman, 1990) to guide the search. Fayyad (1991)

discusses several deficiencies of impurity measures. He pointed out that impurity measures are

 2

insensitive to inter-class separation and intra-class fragmentation, as well as insensitive to

permutations of the class probability distribution (the information paradox (Smith & Goodman,

1991)). Other authors (Kononenko et al.,1997) (Ragavan & Rendell, 1993) indicated that those

measures assume that attributes are conditionally independent and therefore they have poor chances

of revealing a good hypothesis in domains with strong conditional dependencies between attributes.

Furthermore, several authors have provided evidence that the presence of irrelevant attributes can

mislead the impurity functions towards producing bigger, less comprehensible, more error-prone

classifiers.

This work is an attempt to overcome the use of greedy heuristics and search the decision tree space

in a more natural way. More specifically, we make use of genetic algorithms to directly evolve

binary decision trees in the conquest for the one that most closely matches the target concept. On

doing so we adopt a natural representation of the search space using actual decision trees and not

binary strings. We couple our objective with a simplification motivation. We use GAs to evolve

accurate as well as simple decision trees.

Although GAs have been used in a great degree for classification and concept learning tasks

(Wilson, 1986) (Goldberg, 1989) (Booker et al., 1990) (De Jong et al, 1993) (Janikow, 1993)

(Congdon, 1995), there is little work on their utility as a tool to evolve decision trees. The closest

relative of this work comes from Koza (1991) who points out the suitability of the tree genome for

decision tree building (though he did not proceed on details about the advantages/ disadvantages of

such a concept learner).

Most often GAs are related with Decision Trees (or other pattern classification algorithms) as a

preprocessor for the problem of feature selection. That is, from a large number of features select the

most suitable ones to be used by the concept classification algorithm. Punch et al. (1993), Turney

(1995), Vafaie & DeJong (1992), Bala et al. (1995) provided more details on this subject.

Since Schaffer (1993) introduced the concept of different levels of suitability for learner biases, the

idea that there is no universally better algorithm is fast maturing on the machine learning

community. Informally, Schaffer stated that no algorithm biases are suitable for every target

concept; some concepts might be better represented with extremely small trees or they may have a

 3

complex search space optimally represented only after some form of exhaustive search. We might

do better to map different algorithms to different groups of problems with practical importance.

Although there are several types of biases, here we distinguish between preference and procedural

bias. A preference bias is based on the learner’s behavior while a procedural bias is based on the

learner’s design. For example, C4.5 is biased towards accurate, small trees (preference bias) and

uses the gain-ratio metric and minimum-error pruning (different procedural biases). A preference

bias is most often desirable since it determines the characteristics of the produced tree. On the other

hand, an inadequate procedural bias may severely affect the quali ty of the output. The proposed

search imposes a new weak procedural bias, one that allows the concept learner to consider a

relative large number of hypotheses, in a relative eff icient manner. The proposed weak bias

employs global metrics of tree quality. We thus shift from “how” to induce a tree (standard,

impurity-based induction) to “what criteria an induced tree must satisfy” . We view setting a policy

direction, as opposed to how a policy should be implemented, as a de facto decrease in bias with

significant advantages over other highly used procedural biases in complex search spaces.

There is an active debate on the machine learning community on whether less greedy heuristics can

improve the quality of the produced trees. Garey and Graham (1974) showed that greedy algorithms

using information theoretic splitting criteria can be made to perform arbitrarily worse than the

optimal. Norton (1989) showed that exhaustive lookahead applied to ID3 reduced tree sizes on

average and produced small gains in accuracy, but could be expensive. Ragavan and Rendell (1993)

showed that their LFC algorithm that performed both lookahead and constructive induction can

perform well on tasks involving feature interaction. On the other hand, Murthy and Salzberg (1995)

found that one-level lookahead yield larger, less accurate trees on many tasks (they named this

situation decision tree pathology). Quinlan and Cameron-Jones (1995) reported similar findings and

hypothesized that lookahead can yield “ fluke theories” that fit the training data but have poor

predictive accuracy.

Genetic algorithms are neither hill-climbing systems nor do they conduct an exhaustive search of

the space of all possible hypotheses. Rather, they are a type of beam search. The population is the

beam – the collection of points in the search space from which further search may be conducted.

 4

This seems promising regarding their abilit y to aggregate desired characteristics of both hill -

climbing and exhaustive search algorithms.

The rest of this paper is organized in three sections. In the next section we elaborate on the

construction of the proposed system (GATree) and the modifications to the standard mutation-

crossover operators. We then demonstrate via an experimental session that the proposed search

procedure indeed works and point out some of its benefits. Finally, we put all the details together

identifying good points or possible pitfalls and discussing lines of research that have been deemed

worthy of following.

2 THE GATree SYSTEM

To apply GAs to a particular problem, we need to select an internal representation of the space to be

searched combined with an external evaluation function, which assigns scores to candidate

solutions. Both components are critical to the successful application of GAs to the problem of

interest.

2.1 REPRESENTATION ISSUES

Traditionally, GAs use binary strings to represent points in search space. However, such

representations do not appear well suited for representing the space of concept descriptions that are

generally symbolic in nature and with varying length and complexity.

There are two different approaches one might take to resolve this issue. The first involves changing

the fundamental GA operators so as to work well with the complex non-string objects, while the

second attempts to construct string representations of solutions that minimize any changes to the

basic GA philosophy.

We stuck with the first approach for three fundamental reasons. First, it is natural to use a tree

structure to represent decision trees and the mutation-crossover operators can be eff iciently altered

to match this structure. Second, it is not trivial to alter the basic mutation-crossover operators so as

to be used with string representatives of decision trees and at the same time preserve trees

structures. Finally, libraries of GA’s components emerge today that give the option of alternative

internal representations and can substantially decrease the overhead of deriving the needed tuning

of GA’s operators.

 5

For this work we have used GALIB (Wall , 1996), a robust C++ library of Genetic Algorithm

Components. GALIB offers a wide range of internal representations (including a tree

representation) combined with easily adjusted parameters so as to optimally tune its behavior.

2.2 DATA PREPROCESSING AND GENETIC OPERATORS

We use GALIB’s tree representation to build a population of minimal binary decision trees. That is,

we build decision trees that have one decision node that leads to two different leaves. Every

decision node has a random chosen value as its installed test. This is done in two steps. First we

choose a random attribute. Then, if that attribute is nominal we randomly choose one of its possible

values; if it is continuous we randomly pick an integer value belonging to its min-max range. This

approach reduces the size of the search space and it is straightforward. Still , it has problems with

real-valued attributes; for this work we concentrated on nominal attributes. Leaves are populated

using the same line of thought; we just pick a random class from the ones available.

The basic form of the proposed algorithm introduces minimum changes to the mutation-crossover

operators. Mutation chooses a random node of a desired tree and it replaces that node’s test-value

with a new random chosen value. When the random node is a leaf, it replaces the installed class

with a new random chosen class (Figure 1).

The crossover operator chooses two random nodes and swaps those nodes’ sub-trees. Since

predicted values rest only on leaves, the crossover operator does not affect the decision tree’s

coherence (Figure 2).

 M utated N ode

N ew Test V al ue

 M utated L eaf

N ew Cl ass

Figure 1. Mutation Examples

Chosen N ode

Chosen N ode

Figure 2. Crossover Examples

 6

xsize

x
ssifiedCorrectClaitreepayoff

i

i
+

=
2

2 *)(

2.3 PAYOFF FUNCTION

Having a population of candidate solutions we need a payoff function (or objective function) to

assign utility to each one of them. A natural way to assign utility to a random decision tree is by

using it to classify the known instance-set. Then we grant a scaled payoff to the best candidates.

Furthermore, we chose to grant higher payoffs to smaller trees (assuming that they perform almost

equally with bigger ones). This is a way to avoid unnecessary test-values replications along a

specific path (that can happen since we do not exclude any already used attribute-value from being

used again) while at the same time we derive comprehensible decision trees. Thus, the fitness

function is balanced between accuracy and size:

(Eq.1)

The second part of the product (the size factor) includes a factor x which has to be set to an arbitrary

big number. Thus, when the size of the tree is small the size factor is near one, while it decreases

when the tree grows big. This way, the payoff is greater for smaller trees.

The size factor can be altered to match individual needs. For example, if we had set x to 1,000,000

then the GA would search inside a bigger search space (more trees). However, bigger search spaces

inevitably mean less optimized trees for a fixed number of generations. Alternative size factors can

be used that would prefer trees with sizes inside some range (assuming that we know that the target

concept can be represented with a decision tree of a specific size). This could lead to more efficient

search and thus less time for the GA to converge.

2.4 ADVANCED SYSTEM CHARACTERISTICS

To reduce the overcrowding problem (Goldberg, 1989) we used a scaled payoff function, which

aimed at reducing the similarity of decision trees on the population. When there were many decision

trees with similar characteristics1 we reduced their payoff function.

Furthermore, we implemented several alternative crossover and mutation functions. An interesting

alternative crossover used a bias evolution towards more fit subtrees. We implemented a data

structure that kept for every node the correct/incorrect classified instances passing from it. That

1 To estimate the similarity of different decision trees we used a simple, computationally cheap formula based only on
the differences between the number of nodes and tree levels.

 7

information was used to alter the probability with which a node was chosen for mutation or

crossover. More accurate subtrees had less chance to be used for crossover or mutation.

To speed up evolution we also implemented an altered version of Limited Error Fitness (LEF)

(Gathercole & Ross, 1997). This technique introduces an error limit. If the number of errors of an

individual, during the process of evolution, is higher than the error limit, all remaining cases are

treated as errors. This means that poor individuals will not be evaluated on the entire training set,

saving CPU time. With moderate usage of the error limit we were able to produce significant CPU

time savings and insignificant accuracy loses.

To test the effectiveness of all those components we further implemented a second layer genetic

algorithm. The genomes of this algorithm included coded information about the mutation/crossover

rates and different heuristics as well as a number of other optimizing parameters. The second layer

was tested using several datasets to ensure result robustness. Some of the most recurring results

were a mutation rate of 0.005, a crossover rate of 0.93, the need to use a crowding avoidance

technique and the fact that alternative mutations/crossovers did not produce significant

improvements compared to the basic mutation/crossover operators.

2.5 SEARCH SPACE AND INDUCTION COSTS

We have set the basic requirements for our genetic algorithm: an appropriate representation for

possible solutions combined with suitable mutation-crossover operators and a payoff function. Here

we will come-up with a mathematical formula for the size of search space. This is useful since we

would like to achieve a good hypothesis ensuring that we have not exhaustively searched the space.

The size of search space depends on tree size. Let D(n) be the number of topologically different

binary decision trees of n leaves. Then, it has been proven by Fayyad (1991) that:

(Eq. 2)

The search space depends also on the amount of different attribute-values and classes of the

underlying concept. Suppose that � is the sum of the distinct values2 of all features and that c is the

distinct problem classes. Since we use binary decision trees the number of internal nodes is n-1. An

D n

n

n

n

n
n() =

=
−
−







 >







0 0
1 2 2

1
0

 8

nn cnDcnT **)(),,(1−= αα

∑
=

=
k

1n

,c)T(n,cS(k, αα),

internal node can use any one of the � distinct values and that holds for every node. Since we allow

values to be reused, a binary decision tree of n leaves has � n-1 syntactically different trees regarding

the attribute values. This has to be multiplied with the cn syntactically different decision trees

regarding the problem classes. Therefore, the total number of syntactically different binary decision

trees of n leaves is:

 (Eq.3)

When we search for a specific tree we do not stick to trees with specific number of leaves; instead

we search on a space containing a wide range of tree sizes. Assuming that the number of training

instances is k, the maximum number of leaves is also k (one instance at every leaf). Thus, the size of

the search space is:

 (Eq.4)

A serial search for the best tree is prohibitive even under very restrictive situations. Suppose that we

set k to a small number (e.g., 10) and that we have a rather simple concept to learn (2 attributes with

3 different values for each and 2 problem classes). We further reduce the space size by considering

only the possible decision trees for n=10 (even though we should consider all the trees for

n∈[1,10]). This gives, T(10,6,2) = 4862.69.210 = 50,173,704,142,848. Any search algorithm has to

do better then successively test every possible tree.

It can be proven (Quinlan, 1986) that feature selection at a node of greedily induced trees, has

complexity O(ak) for a features and k instances. In contrast, one-level lookahead’s complexity is

O(a2k2) (Murthy and Salzberg, 1995), or more generally O(adkd) for d-1 levels of lookahead. Those

factors are the dominant ones during decision tree induction since subsequent future selection are

based on a partitioned dataset and the number of nodes cannot be greater than the number of

instances.

The cost of the proposed heuristic is based on four different factors: the number of generations

(gen), the number of genomes that are evaluated in the population (pop), the number of instances (k)

and the average path an instance has to follow from the root to a leaf (avPath). Then the cost of the

2 We assume only nominal attributes. For continuous ones the search space is enormously bigger since the possible test
values inside a min-max range are infinite.

 9

algorithm is: gen *
 pop*

 k * avPath. Quite safely, the pop parameter can be set to a constant

multiplier of the number of dataset features a (pop = c1a) with c1 << a. Furthermore, under a very

pessimistic higher boundary we can set avPath to k. With those assumption, the complexity of the

algorithm is O(gen* k
2

*a). Appendix A presents an extension over the basic algorithm that caches

previous classifications and can lower the basic complexity to O(gen*k*a) especially when the

derived trees become large. One cannot precisely express the generations needed for convergence

since they depend on the complexity of the underlying concept. However, since the GA evolves

complete solutions, the algorithm can be terminated whenever necessary. One should also not forget

that GAs are highly parallel procedures, and thus, even lower absolute time requirements are

possible using a parallel evolution. Another advantage of this procedure is that the output is not just

a decision tree but a collection of decision trees that can be used alternatively.

3 EXPERIMENTS

Our first aim was to examine the rate with which GATree produces fit hypotheses for target

concepts. Those concepts were chosen to be of varying complexity. To ensure complexity variety

we used several artificial datasets that were constructed using DataGen; a program that uses random

rules to generate artificial instance-sets (Melli , 1999). The goal was then to use those sets to

reconstruct the underlying knowledge.

For the cross validation experiments we used WEKA; a library of Machine Learning Algorithms in

Java (Witten & Frank, 2000). More specifically, we made use of WEKA’s implementations for two

known classifiers; the C4.5 implementation (Quinlan, 1993) with binary decision trees and the

OneR implementation (Holte, 1993). The parameters for those classifiers were chosen to be the

default ones used by WEKA (Version 3.1.6).

Cross-validation was first performed on a number of artificial datasets explicitly designed to

demonstrate some of GATree’s benefits over greedy heuristics. Then, we compared its performance

against C4.5 and OneR over several discretized datasets. C4.5 and OneR have different

representational bias: C4.5 is biased towards accuracy (and secondarily size) while OneR is biased

towards extremely simple classification rules (and secondarily accuracy). We demonstrate that

their derived hypotheses can unnecessarily deviate from the dual goal (under straightforward

assumptions). Furthermore, we argue that this deviation is partly because of their inappropriate

 10

procedural bias and thus, can be reduced using global metrics of tree quality. For all comparisons,

we adopted a standard 5-fold cross-validation.

A problem with GAs is the diversity of the obtained results due to factors like the initial random

seed, the initial population and number of generations. The diversity may be surprisingly high for

complex search spaces given that we have limited resources (limited number of genomes and

generations). Instead of using a big number of generations and an equally big number of genomes,

we adopted an alternative strategy that uses relatively few generations and a small number of

genomes but repeats the learner several times. For every output of the cross-validation experiments

we repeated the algorithm 10 times and then picked the highest fit genome (based on training set).

The algorithm’s parameters during the experiments are presented in Table 1. We have chosen to use

overlapping populations; every generation replaces 25% of the worst individuals of the previous

one. The initial population was set to 200 even though it can vary depending on the complexity of

the target concept. The number of generations was fixed to 200 for all cross validation experiments.

The mutation and crossover rates were set to 0.005 and 0.93 accordingly, based on the second layer

feedback. In order to allow reproducibil ity we initialized the random generator using the value

123456789.

The factor x was set to 1000 for the experiments with standard datasets. A small factor x means a

bias towards small trees. However this bias is flexible since the algorithm may deviate from it (only

as much is needed) to produce an acceptable hypothesis. For all other experiments we set the factor

x to 10000 (emphasis on accuracy).

Table 1. Experiments Parameters

Evolution Type Generational
Initial Population 200
Generations 200 – 800
Generation Gap 25 %
Mutation Probability 0.005
Crossover Probability 0.93
Size Factor 1000-10000
Random Seed 123456789

 11

3.1 HYPOTHESES FITNESS

To ensure that the GA produces fit hypotheses we tested its performance with three synthetic

datasets. All datasets had 3 attributes (A, B, C), that could take up to 26 distinct values (a…z) and 3

problem classes (c1, c2, c3). For those experiments we set the number of generations to 800.

The exact activation rules of the first synthetic dataset are presented below:

(31.0%) c1
�

 B=(f or g or j) & C=(a or g or j)

(28.0%) c2
�

 C=(b or e)

(41.0%) c3
�

 B=(b or i) & C=(d or i)

Attribute A is not used by any activation rule and, thus, its main influence is as noise.

Although the target concept is not very complicated, the search space is huge. Figures 3 presents the

results obtained using GATree with 100 random instances of the abovementioned concept.

Mean fitness refers to the average fitness score of all genomes inside the current population. Fitness

is the fitness score of the best individual. Accuracy is the obtained classification accuracy using the

best genome and Size is the number of nodes of the best individual.

The algorithm quickly (in less than 100 generations) finds a maximum fit hypothesis and then (for

about 80 generations) makes minor adjustments adopting smaller trees that guarantee the obtained

accuracy. Figure 4 illustrates the final decision tree.

C=b

C=e

B=i

B=b

c 2

c 2

c 3

c 3c 1

Figure 4. The obtained decision tree for the simple concept
0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1
10 70 130

190

250

310

370

430

490

550

610

670

730

790

Generations

F
it

n
es

s
-

A
cc

u
ra

cy

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

S
iz

e

Mean Fitness
Fitness
Accuracy
Size

Figure 3. Results for the simple concept

 12

More complex problems may not converge to maximum fit hypotheses. Often the misclassified

instances would be those that create an exception to the underlying concept characteristics and thus,

by not creating a rule to classify them, we produce a more fit hypothesis for test data (this can be

viewed as a form of f lexible pruning). However, on noisy datasets, oversearching may produce

overfitted trees. In such situations we could either use alternate size fitness functions (which

somehow avoid the incorporation of noise) or post-process the derived trees with a pruning

technique.

Figure 5 presents the results for a more complex artificial dataset. The dataset was created using

eight rules (in contrast with the three rules of the first dataset). Furthermore, the rules had more

complex structures, adopting more disjunctions per rule. For example, the first two activation-rules

were as below:

(15.0 %) c1
�

 A=(a or b or t) & B=(a or h or q or x)

(14.0%) c1
�

 B=(f or l or s or w) & C=(c or e or f or k)

Evidently GATree had a harder time to find a fit hypothesis. More search had to be done, inside

bigger and more complex trees. An interesting part of the graph is the size peaks that appeared

during searching. For example, between the 370th and 430th generation the size of the tree was

overly expanded and then reduced. Such peaks identify an upper limit in the accuracy of the

produced tree that needed a hypothesis jump in order for the evolution to continue. Such regions

may also indicate problematic points for greedy heuristics, since they specify local maximums.

Figure 6 presents the results for the most complex artificial concept we used. The dataset was

created from twelve activation rules. The first two of them were as below:

(13.0%) c1
�

A=(i or k) & C=(a or c or e or h)

 (11.0%) c2
�

A=(d or e or h or o) & B=(d or g or h) & C=(j or k or m)

It is clear from the presented graphs that there is a connection between the concepts’ complexity

and the convergence rate. More specifically, more complex concepts converged slower than easier

ones. Further experiments indicated that this trend stands for a wide range of concepts.

 13

A diminishing returns effect is also evident on those graphs. GATree was quick to produce

relatively fit hypotheses but subsequent generations showed a slowly attained progress. This also

indicates that, even though GAs get very close to the global optimum it is very expensive to exactly

reach it. Perhaps it would be wiser to use an alternate strategy to fine-tune the result.

3.2 CONDITIONALLY DEPENDENT AND IRRELEVANT ATTRIBUTES

Consider the example data set given in Table 2.

Table 2: Example dataset

A1 A2 A3 Class
t f t t
t f f t
f t f t
f t t t
f f f f
f f f f
t t t f
t t f f

The class value is determined with XOR function on attributes A1 and A2, while the third attribute

A3 is randomly generated. Although such a concept seams rather easy, the greedy heuristic of C4.5

falsely estimates that the contribution of A3 is the highest among the three attributes. Moreover,

C4.5 estimates that the contribution of the A1, A2 is very low. Therefore, C4.5 derives a decision

tree with only one decision node (after pruning) that has the attribute A3 installed in it. Of course

such a decision tree is unacceptable.

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

10 70 130

190

250

310

370

430

490

550

610

670

730

790

Generations

F
it

n
es

s
-

A
cc

u
ra

cy

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

S
iz

e

Mean Fitness
Fitness
Accuracy
Size

Figure 5. Results for the complex concept Figure 6. The most complex artificial concept

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

10 70 130

190

250

310

370

430

490

550

610

670

730

790

Generations

F
it

n
es

s
-

A
cc

u
ra

cy

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

S
iz

e

Mean Fitness
Fitness
Accuracy
Size

 14

On the other hand, the less greedy strategy of GATree (which tries to minimize a tree’s size while at

the same time maximize accuracy) easily discovers the desired decision tree (Figure 7)

Even if we had prevented C4.5 from pruning the tree, it would create two replicated, identical to

Figure 7, subtrees under the initial A3 node; a substantially bigger, less comprehensible tree.

In order to further empirically evidence the previous mentioned deficiency of greedy heuristics, we

created several artificial datasets with strong dependent and irrelevant attributes. The characteristics

of those datasets are presented in the following table:

Table 3: Artificial datasets characteristics

Name Attributes Class Function Noise Instances Random
Attributes

Xor1 10 (A1 xor A2) or (A3 xor A4) No 100 6
Xor2 10 (A1 xor A2) xor (A3 xor A4) No 100 6
Xor3 10 (A1 xor A2) or (A3 and A4) or (A5 and A6) 10% class error 100 4
Par1 10 Three attributes parity problem No 100 7
Par2 10 Four attributes parity problem No 100 6

For the experiments we used C4.5 as a typical representative of greedy induction. The mean

accuracy results of standard 5-fold cross validation are presented in Table 4.

Almost all experiments showed that greedy heuristics could not eff iciently deal with conditionally

dependent attributes. GATree outperformed them in a more than significant level. However, one of

the datasets (Xor3) showed that the presence of class noise can make GATree deviate from good

predictors.

Table 4: Classification accuracy
 C4.5 GATree

Xor1 67±12.04 100±0

Xor2 53±18.57 90±17.32

Xor3 79±6.52 78±8.37

Par1 70±24,49 100±0

Par2 63±6.71 85±7.91

A1=t

A2=t

tf

A 2= f

ft
Figure 7. The obtained decision tree for the conditionally

dependent attributes

 15

3.3 EXPERIMENTS WITH STANDARD DATASETS

Experiments were conducted using several datasets from the UCI Repository (Blake et al., 2000).

Every continuous attribute was discretized using WEKA’s unsupervised equal-frequency binning

method. The number of bins was optimized using the entropy minimization criterion. We decided

not to use a supervised (class based) discretization to artificially produce erroneous, complex search

spaces with irrelevant as well as somewhat mutually dependent attributes3. Table 5 presents the

classification accuracy results while Table 6 presents the derived decision trees size for GATree and

C4.5 (with pruning).

Table 5: Classification accuracy

 C4.5 OneR GATree

Colic 83.84±3.41 81.37±5.36 85.01±4.55

Heart-Statlog 74.44±3.56 76.3±3.04 77.48±3.07

Diabetes 66.27±3.71 63,27±2.59 63,97±3.71

Credit 83.77±2.93 86.81±4.45 86.81±4

Hepatitis 77.42±6.84 84.52±6.2 80.46±5.39

Iris 92±2.98 94.67±3.8 93.8±4.02

Labor 85.26±7.98 72.73±14.37 87.27±7.24

Lymph 65.52±14.63 74.14±7.18 75.24±10.69

Breast-Cancer 71.93±5.11 68.17±7.93 71.03±8.34

Zoo 90±7.91 43.8±10.47 85.4±4.02

Vote 96.09±3.86 95.63±4.33 95.63±4.33

Glass 55.24±7.49 43.19±4.33 53.48±4.33

Balance-Scale 78.24±4.4 59.68±4.4 71.15±6.47

AVERAGES 78.46 72.64 78.98

Table 6: Average tree sizes

 C4.5 GATree

Colic 27.4 5.84

Heart-Statlog 39.4 8.28

Diabetes 140.6 6.6

Credit 57.8 3

Hepatitis 19.8 5.56

Iris 9.6 7.48

Labor 8.6 8.72

Lymph 28.2 7.96

Breast-Cancer 35.4 6.68

Zoo 17 10.12

Vote 11 3

Glass 60.2 8.98

Balance-Scale 106.6 8.92

AVERAGES 43.2 7.01

GATree was able to produce the most accurate results (on average) even though the difference with

C4.5 is not significant. However, it is most important that those results were accompanied by

extremely small decision trees (C4.5 produced seven times bigger trees on average). Another

significant point is that, even though there are datasets where the accuracy difference between C4.5

and OneR was big (Labor, Lymph, Zoo, Balance-Scale, Labor) GATree managed to be close to (or

better than) the most accurate scheme.

3 By choosing to use binary decision trees we implicitly use attribute-values pairs as attributes since every decision node
has a specific attribute-value instead of an attribute installed in it

 16

It is clear that under such noisy datasets OneR can exceed C4.5 in accuracy, in several datasets.

However, in the general case it performs substantially worse. We attribute that behaviour to its

procedural bias. OneR picks only one attribute and then branch on its values. However, this

overlooks the fact that there can be several other informative attributes while, equally crucially,

there can be branches based on irrelevant values.

On the other hand, C4.5 produces good accurate results but with unnecessarily big trees. Pruning

consistently under-prunes the resulted trees. However, the overly sized trees cannot be attributed

only to the inadequacy of pruning to predict the optimal pruning level. When a decision tree

induction method prunes away a subtree, it applies a statistical test that decides whether that subtree

is justified by the data. But that decision has only been applied locally, in the pruned subtree. Its

effect has not been allowed to percolate further up the tree, perhaps resulting in different choices

being made on attributes to branch on. This is the dual process of greedy induction; pruning is

another hill-climbing technique which can quickly guide to a good result, or on the other hand, can

substantially deviate from the optimum.

Contrary to greedy induction, GATree produces a dynamic, small-biased, accuracy/size based tree

optimisation. This procedure is potentially superior than the (treated as uncorrelated) build-prune

procedure of greedy heuristics. Nevertheless, GATree’s “pruning capabilit ies” is just a side effect

of its design. Possibly, there can be better ways to achieve its effect using more precise global

metrics of tree quali ty.

4 DISCUSSION

GATree can be easily extended to make use of sets of independent decision tree classifiers. Recall

that the building blocks that (mainly) comprise the final tree are created during the first step of the

algorithm (where it produces a set of minimal random binary trees) and thus, those building blocks

are different every time we use a different seed to initialize the random generator. Even when

distinct populations of building blocks cannot substantially differ between them (when for instance

there are not many attribute-values and/or classes), there is the payoff f unction that can be altered to

prefer classifiers with different characteristics. Now, whenever an unknown instance has to be

classified one can decide about its class by using a majority vote over every decision tree inside the

classifier set.

 17

Other scheduled improvements include the dynamic tuning of parameters. One can estimate the

problem’s space-size and the convergence characteristics (by a bootstrap testing procedure). We

intend to investigate the effect of those two parameters on initial algorithm characteristics to obtain

optimal results with less generations and smaller initial population.

A basic drawback of GAs, compared with greedy heuristics, is speed. In order to evolve 200

decision trees for 200 generations with 25% generation gap we have to create and test 10150

decision trees. Although those trees are cheap to create and use, the time burden is substantially

bigger than that of other heuristics (like information gain). Two potentially fruitful ideas are in the

making for the near future regarding this issue.

The first is based on the fact that the control problem (a major issue when the knowledge is

represented with rules) is implicitly solved in decision trees. The crossover/mutation operators

change the tree from a node downwards. Instead of classifying every instance using the changed

tree (in order to assign it some score), we can classify only the instances that belong to the changed-

node’s subtree. That can result in substantial timesavings when the crossover is near the tree’s

fringe. The extra burden is additional structures that keep track of every instance passing from some

node, together with node statistics (how many instances pass from it, how many of them were

correctly classified). Appendix A presents an estimation on the average percent of instances that

may have to be re-classified using this technique compared to 100% of the original algorithm; it

shows a more than significant decrease in the expected number of added classifications.

This idea, however, reveals the true nature of the problem in applying genetic algorithms. As we

move towards eff iciency, the underlying object of research shifts from the learning paradigm to the

data (infra) structure. The researcher must carefully organize the search space so as to make full use

of previously observed problems, by avoiding re-solving them (in our case, this means by suitably

manipulating instance-sets to calculate rather than test accuracy). An optimistic reader could

observe that this shift may well be a sign of the growing maturity of the field; the authors are more

inclined to observe in this idea, however, the seeds of a quintessential topic in computer science:

data caching.

The second possible solution to the speed problem is a parallel implementation. There are several

different approaches to parallelization. A coarse grain approach subdivides the population into

 18

distinct groups of individuals called demes, and assigns each deme to a different computational

node. Galib offers a deme based Genetic Algorithm in which populations are evolved in parallel

(although in simulation mode). In contrast to coarse-grain, fine-grain implementations assign one

processor per genome. Recombination takes place among neighboring individuals. Coarse-grain

solutions are rather computationally complicated but they can produce significant timesavings.

5 Conclusion

In this work we have explored how GAs can be used to directly evolve decision trees. The whole

approach is based on conceptual simplicity, adopting only necessary extensions to basic GAs and

small a priori bias. The experiments have indicated that GAs have substantial advantages over other

greedy induction heuristics especially when there are irrelevant or strongly dependent attributes.

Furthermore, experiments demonstrated the implications of adopting greedy procedural biases.

Surely, the proposed approach has several childhood flaws (e.g., results variance due to different

initial conditions). Still, those flows can be remedied by further work and this paper suggests a

number of research topics towards this direction.

References

Bala, J., Huang, J., Vafaie, H., DeJong, K., Wechsler, H. (1995).

Hybrid Learning Using Genetic Algorithms and Decision Trees

for Pattern Classification. Proceedings of IJCAI95, Montreal.

Blake, C., Keogh, E., & Merz, J. (2000)

UCI Repository of machine learning databases

[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA:

University of California, Department of Information and

Computer Science.

Booker L.B., D.E. Goldberg & J.H. Holland (1989). Classifier

Systems and Genetic Algorithms, Artificial Intelligence, 40, 2,

235-282.

Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. (1984)

Classification and Regression Trees. Wadsworth International

Group.

Congdon, C.B. (1995). A comparison of genetic algorithms and

other machine learning systems o a complex classification task

from common disease research, Doctoral dissertation,

Department of Electrical Engineering and Computer Science,

Univercity of Michigan.

DeJong, K.A., Spears, W.M., & Gordon, D.F. (1993). Using genetic

algorithms for concept learning. Machine Learning, 13, 161-188.

Fayyad, M.U. (1991). On the Induction of Decision Trees for

Multiple Concept Learning, Doctoral dissertation, Department of

Electrical Engineering and Computer Science, Univercity of

Michigan.

Garey R.M., and Graham L.,R (1974) Performance bounds on the

splitting algorithm for binary testing. Acta Informatica, 3(Fasc.

4):347--355.

Gathercole, C., Ross, P., (1997) Tackling the Boolean even N

parity problem with genetic programming and limited-error

fitness. Genetic Programming 1997: Procceedings of the

Second Annual Conference, 119-127.

Goldberg D. (1989). Genetic Algorithms in Search, Optimization &

Machine Learning. Addison-Wesley.

Holte, R.C. (1993). Very simple classification rules perform well on

most commonly used datasets, Machine Learning 11,63-91.

Janikow, C., Z. (1993) A knowledge-intensive genetic algorithm for

supervised learning, Machine Learning, 13,189-228.

Kononenko, I., E. Simec, and M. Robnik-Sikonja (1997).

Overcoming the myopia of inductive learning algorithms with

RELIEFF. Applied Intelligence 7, 39—55

Koza,J.R (1991) Concept formation and decision tree induction

using the genetic programming paradigm. Parallel problem

solving from nature. Springer Verlag, Berlin.

 19

Mantaras., R.S. (1989). ID3 Revisited: A distance based criterion

for attribute selection, Proceedings of Int. Symp. Methodologies

for Intelligent Systems, Charlotte, North Carolina, USA.

Melli, G. (1999). Data Set Generator Program,

www.datasetgenerator.com.

Mitchell, T. (1997). Machine Learning. McGraw-Hill Series in

Computer Science.

Murthy, S. & Salzberg, S. (1995), Lookahead and pathology in

decision tree induction, Proceedings of the 14th International

Joint Conference on Artificial Intelligence, Morgan Kaufmann,

1025-1031

Murthy S., K (1998). Automatic construction of decision trees from

data: A multidisciplinary survey. Data Mining and Knowledge

Discovery.

Norton, S., W. (1989). Generating Better Decision Trees. In

Proceedings of the Eleventh International Joint Conference on

Artificial Intelligence, 800-815.

Punch, W.F., Goodman E.D., Pei Min, Chia-Shun Lai, Hovland P.

& Enbody R. (1993). Further Research on Feature Selection and

Classification Using Genetic Algorithms. Proceedings of

ICGA93, 557-564.

Quinlan, R. (1986). Induction of decision trees, Machine Learning,

1:81-106,1986

Quinlan, R. (1993). C4.5: Programs for Machine Learning, Morgan

Kaufmann Publishers, San Mateo, CA.

Quinlan, J. R. and Cameron-Jones, R. M.(1995) Oversearching

and layered search in empirical learning. In Proceedings of the

14th International Joint Conference on Artificial

Intelligence,1019-1024, Montreal, Canada.

Ragavan, H. and L. Rendell (1993), Lookahead Feature

Construction for Learning Hard Concepts, Proceedings of the

Tenth International Conference on Machine Learning, Amherst,

MA, pp. 252--259 (Morgan Kaufmann, San Francisco, CA).

Schaffer, C. (1993). Overfitting avoidance as bias, Machine

Learning, 10, 153-178

Smyth, P. Goodman, R.M. (1990) Rule Induction using information

theory, Knowledge Discovery in Databases, Mit Press.

Smyth, P. Goodman, R.M. (1991) An information theoretic

approach to rule induction from databases, IEEE Transactions

on Knowledge and Data Engineering.

Turney, D.P (1995). Cost-Sensitive Classification: Empirical

Evaluation of a Hybrid Genetic Decision Tree Induction

Algorithm. Journal of Artificial Intelligence Research, 2, 369-409.

Vafaie, H., DeJong, K. (1992). Genetic Algorithms as a Tool for

Feature Selection in Machine Learning. IEEE Computer Society

Press, Los Alamos, CA, 200-203.

Wall, M. (1996). GAlib: A C++ Library of Genetic Algorithm

Components. M.I.T.

Wilson, S.W. (1986). Classifier system learning of a boolean

function (Research Memo RIS-27r). Cambridge, MA: Rowland

Institute for Science.

Witten, I., Frank, E. (2000) Data Mining: Practical Machine

Learning Tools and Techniques with Java Implementations.

Morgan Kaufmann Publishers, San Mateo, CA

Appendix A

We can estimate the average number of instances that have to be re-classified in a crossovered

and/or mutated tree as a function of tree levels and the original number of instances. This way we

can reduce the computational cost of the objective function by recalculating it only for the changed

fraction of the tree.

This analysis is based on the assumption that instances are equally distributed between nodes. This

means that if a father-node has k instances, then k/2 instances arrives at each one of its two children.

Another assumption is that nodes are chosen for crossover or mutation with equal probability.

Therefore, if we have a tree with size n then the probability of a node to be chosen is 1/n.

Our average analysis deals with the two extremes of binary decision trees: the linear binary

decision tree and the complete binary decision tree. Let l be the number of levels of a binary

decision tree. Then, a linear binary tree has l+1 leaves and a total of 2l+1 nodes while a complete

 20

)
2

1
1(

12
),(

1
1∑

=
−+

+
=

l

m
ml

k
lkL

l

k

l

k

l

k

l
k

l 212

2
...

412

2

212

2

12

1

+
++

+
+

+
+

+

binary decision tree has 2l leaves and a total of 2l+1-1 nodes. Any other binary decision tree with l

levels lies somewhere between those two ends.

Figure 8 presents the linear and complete binary decision trees of three levels together with the

number of instances at each node (supposing that instances are equally distributed and that their

total number is k).

If the root node of the complete decision tree was chosen for crossover/mutation then all k instances

should be re-classified. On the other hand, if a leaf was chosen then only k/8 instances should be re-

classified. Since every node has a probability to be chosen it can be proven that the average

number of instances that have to be used for the new hypotheses evaluation is:

Or in a more compact form:

 (Eq. 5)

Using the same line of though, the average number of instances that have to be re-classified in a

linear decision tree is:

Or in a more compact form:

 (Eq. 6)

We know that the number of instances that have to be re-classified lies somewhere between those

two extreme averages. Figure 9 shows the percent of the initial instances that has to be re-classified

under both boundaries as a function of tree levels. For example, in a tree with eight levels we need

to re-classify between 2% and 18% of the initial instances.

12

)1(
),(

1 −
+= +l

l
klkC

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

1 5 9 13 17 21 25 29 33 37 41 45 49

Tree levels

P
er

ce
n

t
O

f
In

st
an

ce
s

th
at

 m
u

st
 b

e
re

-

cl
as

si
fi

ed

C om plete Binary
D ec is ion Tree

Linear Binary
D ec is ion Tree

Figure 9. Average needed re-classification

12

1
1 −+l

ll

l

lll

kkk
k

212

2
...

412

4

212

2

12

1
1111 −

++
−

+
−

+
− ++++

k

k/2k /2

k /4 k /4

k /8k /8

k

k/2

k /4

k /8k /8

k /4

k /8k /8

k /2

k /4

k /8k /8

k /4

k /8k /8

Figure 8. Linear and Complete binary decision trees of 3
levels

